首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
颗粒材料中致密波结构研究   总被引:1,自引:1,他引:0  
采用一维两相流模型与相应颗粒构形应力函数,研究了致密波的形成及其结构.用简化两相流模型系统地讨论致密波对有关因素的依赖关系.分析指出:小于基体材料音速的致密波仅能在非理想颗粒材料中存在,从波前到波后,所有状态物理量光滑过渡.大于基体材料音速的致密波,波头可能存在间断.应力函数与致密粘性确定后,致密波速度决定致密波结构、宽度、终态压实度.采用一维两相流模型模拟了活塞驱动颗粒床形成致密波这一动态过程.用线方法(MOL)对该方程组求数值解.计算表明,经过短暂的非稳态过程,颗粒床中形成一稳态致密波.分析了活塞速度与初始孔隙率对致密波结构的影响,并对简化两相流模型与两相流模型的计算结果进行了对比.  相似文献   

2.
Most gas dynamic computations in industrial ducts are done in one dimension with cross-section-averaged Euler equations. This poses a fundamental difficulty as soon as geometrical discontinuities are present. The momentum equation contains a non-conservative term involving a surface pressure integral, responsible for momentum loss. Definition of this integral is very difficult from a mathematical standpoint as the flow may contain other discontinuities (shocks, contact discontinuities). From a physical standpoint, geometrical discontinuities induce multidimensional vortices that modify the surface pressure integral. In the present paper, an improved 1D flow model is proposed. An extra energy (or entropy) equation is added to the Euler equations expressing the energy and turbulent pressure stored in the vortices generated by the abrupt area variation. The turbulent energy created by the flow–area change interaction is determined by a specific estimate of the surface pressure integral. Model’s predictions are compared with 2D-averaged results from numerical solution of the Euler equations. Comparison with shock tube experiments is also presented. The new 1D-averaged model improves the conventional cross-section-averaged Euler equations and is able to reproduce the main flow features.  相似文献   

3.
We simulated rapid flow in transient plane Couette flows of granular particles using the smoothed particle hydrodynamics(SPH) solutions of a set of continuum equations.This simulation was performed to test the viability of SPH in solving the equations for the solid phase of the two-fluid model associated with fluidization.We found that SPH requires the handling of fewer particles in simulating the collective behavior of rapid granular flow,thereby bolstering expectations of solving the equations for the solid phase in the two-fluid modeling of fluidization.Further work is needed to investigate the effect of terms describing pressure and viscous stress of solids on stability in simulations.  相似文献   

4.
This paper details an approach to modelling gas–solid fluidized beds using the two‐fluid granular temperature model. Details concerning the difficulties associated with the boundary conditions, particularly for curved boundaries, are described along with a novel means of obtaining the internal stress of the solid‐phase, in part, by solving an implicit equation. This results in a scheme that is stable even when the solid volume fraction is close to maximum packing. A transient, mixed finite element discretization is used to solve the multi‐phase equations with a discontinuous finite element representation of the granular temperature and continuity equations. A new solution method is proposed to solve the coupled momentum and continuity equations based on Arnoldi iteration. Two fluidized beds are modelled, one in the bubbling regime and the other in the slugging regime. These simulations are compared with experiments. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

5.
A numerical method was investigated for multiphase fields consisting of compressible gas and arbitrarily shaped solids. Since the proposed model is based on a one‐fluid model in which variables are averaged according to the phase fractions in the computational cells; it enables us to estimate gas‐solid momentum and thermal interactions without setting up adapting grids even if the solids have extremely complicated shapes. The governing equations are derived with the characteristics of an ideal gas assuming the specific heat to be uniform in the multiphase field. The derived equations in conservative form are discretized with a finite volume method. In addition, the pressure is calculated implicitly in a similar way to incompressible flow solvers. Because of these improvements, the proposed method allows us to calculate low Mach number compressible flows free from the Courant‐Friedrichs‐Lewy condition based on the speed of sound and to conserve the mass more accurately. To confirm the validity of the proposed method, it was applied to natural convection around an isothermal cylinder and a heat‐conducting pipe. In comparison with previous studies, it was confirmed that the gas flows and temperature distributions are predicted reasonably. In addition, a numerical experiment was conducted under more complicated conditions, namely, gas leaking from a container including heat sources. As a result, it was demonstrated that the proposed method enables us to predict unsteady variations of pressure and temperature distributions in the container due to the leakage while still conserving mass accurately.  相似文献   

6.
In this study, a high-order accurate numerical method is applied and examined for the simulation of the inviscid/viscous cavitating flows by solving the preconditioned multiphase Euler/Navier-Stokes equations on triangle elements. The formulation used here is based on the homogeneous equilibrium model considering the continuity and momentum equations together with the transport equation for the vapor phase with applying appropriate mass transfer terms for calculating the evaporation/condensation of the liquid/vapor phase. The spatial derivative terms in the resulting system of equations are discretized by the nodal discontinuous Galerkin method (NDGM) and an implicit dual-time stepping method is used for the time integration. An artificial viscosity approach is implemented and assessed for capturing the steep discontinuities in the interface between the two phases. The accuracy and robustness of the proposed method in solving the preconditioned multiphase Euler/Navier-Stokes equations are examined by the simulation of different two-dimensional and axisymmetric cavitating flows. A sensitivity study is also performed to examine the effects of different numerical parameters on the accuracy and performance of the solution of the NDGM. Indications are that the solution methodology proposed and applied here is based on the NDGM with the implicit dual-time stepping method and the artificial viscosity approach is accurate and robust for the simulation of the inviscid and viscous cavitating flows.  相似文献   

7.
The interaction of a planar shock wave with a loose dusty bulk layer has been investigated both experimentally and numerically. Experiments were conducted in a shock tube. The incident shock wave velocity and particle diameters were measured with the use of pressure transducers and a Malvern particle sizer, respectively. The flow fields, induced by shock waves, of both gas and granular phase were visualized by means of shadowgraphs and pulsed X-ray radiography with trace particles added. In addition, a two-phase model for granular flow presented by Gidaspow is introduced and is extended to describe such a complex phenomenon. Based on the kinetic theory, such a two-phase model has the advantage of being able to clarify many physical concepts, like particulate viscosity, granular conductivity and solid pressure, and deduce the correlative constitutive equations of the solid phase. The AUSM scheme was employed for the numerical calculation. The flow field behind the shock wave was displayed numerically and agrees well with our corresponding experimental results.   相似文献   

8.
Summary In a previous paper (1) proposals were made for the equations which govern the mechanical behaviour in plane strain of an ideal incompressible granular material. In this paper tentative suggestions are made for the extension of this theory to compressible granular materials. The material is envisaged as a mixture of an ideal gas and solid particles. The state of an element of the mixture is determined by its overall density and the mass and volume concentrations of the constituents. It is proposed that the material satisfies a flow condition which relates the two principal invariants of the stress (in two dimensions) and the density. The condition for the stress equations to be hyperbolic is obtained, and for the hyperbolic case a natural interpretation is obtained for the angle of internal friction.For the kinematic behaviour it is proposed that the deformation consists of superposed shearing deformations on the stress characteristic surfaces, as described in (1), together with a superposed dilatation. The equations describing this behaviour are expressed in characteristic form. They reduce to the equations given in (1) when the density is constant.  相似文献   

9.
吴坤  刘向军  戴椰凌 《力学学报》2021,53(10):2752-2761
颗粒移动床在工业领域应用广泛, 发展实用可靠的颗粒移动床模型具有理论和应用价值. 本文基于颗粒流μ(I)模型, 补充局部颗粒体积分数与颗粒局部压力和局部颗粒流密度的关系式, 将移动床内密集颗粒处理成可压缩拟流体, 建立了颗粒流单相可压缩流μ(I)模型, 并建立了颗粒流?壁面摩擦条件, 在计算中对颗粒流拟黏度和拟压力项进行正则化处理. 采用上述模型与方法对3种典型散料在移动床缩口料仓内的流动进行模拟, 与实验对比, 得到了玻璃珠、刚玉球和粗沙的μ(I)模型参数, 分析了3种不同散料在料仓内的颗粒速度、体积分数等分布特性, 模拟结果较好地揭示了料仓内不同物料的整体流和漏斗流特性; 进而以玻璃珠为例, 对移动床颗粒单管绕流流动进行了模拟, 所得结果合理揭示了管流附近的流动特性. 计算结果表明, 对于本文的计算工况, 颗粒体积分数变化最大范围为0.510 ~ 0.461, 绝大部分区域流动惯性数小于0.1, 改进的单相μ(I)模型能合理预测出密集颗粒流移动床内的流动特性, 方法可行且较多相流算法能明显减小计算量.   相似文献   

10.
杨秋足  徐绯  王璐  杨扬 《力学学报》2019,51(3):730-742
多相流界面存在密度、黏性等物理场间断,直接采用传统光滑粒子水动力学(smoothedparticle hydrodynamics,SPH)方法进行数值模拟,界面附近的压力和速度存在震荡.一套基于黎曼解能够处理大密度比的多相流SPH计算模型被提出,该模型利用黎曼解在处理接触间断问题方面的优势,将黎曼解引入到SPH多相流计算模型中,为了能够准确求解多相流体物理黏性、减小黎曼耗散,对黎曼形式的SPH动量方程进行了改进,又将Adami固壁边界与黎曼单侧问题相结合来施加多相流SPH固壁边界,同时模型中考虑了表面张力对小尺度异相界面的影响,该模型没有添加任何人工黏性、人工耗散和非物理人工处理技术,能够反应多相流真实物理黏性和物理演变状态.采用该模型首先对三种不同粒子间距离散下方形液滴震荡问题进行了数值模拟,验证了该模型在处理异相界面的正确性和模型本身的收敛性;后又通过对Rayleigh--Taylor不稳定、单气泡上浮、双气泡上浮问题进行了模拟计算,结果与文献对比吻合度高,异相界面捕捉清晰,结果表明,本文改进的多相流SPH模型能够稳定、有效的模拟大密度比和黏性比的多相流问题.   相似文献   

11.
Due to the wide range of spatial scales and the complex features associated to fluid/solid and solid/solid interactions in a dense fluidized bed, the system can be studied at different length scales, namely micro, meso and macro. In this work, we select a flow configuration relevant of a homogeneous liquid/solid fluidization and compare computed results from Particle Resolved Simulation (PRS) with those from locally averaged Euler/Lagrange simulation. PRS at the micro-scale is carried out by a parallel Distributed Lagrange Multiplier (DLM) solver in the framework of fictitious domain methods (Wachs, 2011a, 2015). For meso-scale simulations, the set of mass and momentum conservation equations is averaged in control volumes encompassing few particles and momentum transfer between the two phases is modeled using appropriate drag laws. Both methods are coupled to a Discrete Element Method (DEM) combined with a soft-sphere contact model to solve the Newton–Euler equations with collisions for the particles in a Lagrangian framework (Wachs et al., 2012). A test case of intermediate size with 2000 spheres is chosen as a sensible compromise between size limitations of the meso-scale model for an appropriate averaging process and computational resources required to run micro-scale simulations. These two datasets yield new insight on momentum transfer at different spatial scales in the flow, and question the validity of certain approximations adopted in the meso-scale model. Results demonstrate an acceptable agreement between the micro- and meso-scale predictions on integral measures as pressure drop and bed height. Investigating more detailed features of the flow, it has been shown that particles fluctuations are considerably suppressed in meso-scale simulations and in particular the particles transverse motion is underestimated, regardless of the selected drag law. The origin of these dependencies is carefully investigated by reconstructing the closure laws based on PRS results and comparing them to the closure laws proposed in the literature.  相似文献   

12.
In the current work we propose a multiphase DNS method capable of resolving the motion of solid particles coupled with heat transfer effects. The method is based on solving a shared set of momentum and energy balance equations for the carrier phase and the particulate phase. Individual particles are tracked using a number of volume fraction advection equations. The proposed method is in very good agreement with the available data in the literature for the following cases: isothermal particle motion (in the presence of walls and other particles), natural convection around a stationary particle and solid particles motion accompanied with heat transfer effects. In addition, we show that the method is inherently capable of handling deformable particles (i.e. droplets and bubbles) co-existing with solid particles. The method is thus well suited to deal with challenging multiphase systems, such as diesel spray combustion with soot formation, spray drying with particle nucleation, and biological treatment of waste water.  相似文献   

13.
The approach to residual oil saturation during the immiscible displacement of oil as predicted by the multiphase Darcy equations is studied. It is well known that when the capillary pressure term is neglected, one arrives at the Buckley-Leverett formulation according to which the inlet face attains residual oil saturation instantaneously. This result may, however, be strongly influenced by the inclusion of the capillary pressure term. In this paper it is shown that when the relative permeability and capillary pressure functions have power law dependencies on the saturation deviation from residual oil condition, the long time solution exhibits a power law decay toward residual saturation. Moreover, the power law decay solution is found to be unique and independent of the initial condition. The relationship of this solution to the classical Buckley-Leverett result is shown. Finally, generalization to the time varying flow rate case is addressed. As a verification of the theoretical conjectures, the power law solution is compared with direct numerical simulation of the two phase flow equations.  相似文献   

14.
The effects of non-Newtonian behaviour of a fluid and unsteadiness on flow in a channel with non-uniform cross-section have been investigated. The rheological behaviour of the fluid is assumed to be described by the constitutive equation of a viscoelastic fluid obeying the Oldroyd-B model. The finite element method is used to analyse the flow. The novel features of the present method are the adoption of the velocity correction technique for the momentum equations and of the two-step explicit scheme for the extra stress equations. This approach makes the computational scheme simple in algorithmic structure, which therefore implies that the present technique is capable of handling large-scale problems. The scheme is completed by the introduction of balancing tensor diffusivity (wherever necessary) in the momentum equations. It is important to mention that the proper boundary condition for pressure (at the outlet) has been developed to solve the pressure Poisson equation, and then the results for velocity, pressure and extra stress fields have been computed for different values of the Weissenberg number, viscosity due to elasticity, etc. Finally, it is pertinent to point out that the present numerical scheme, along with the proper boundary condition for pressure developed here, demonstrates its versatility and suitability for analysing the unsteady flow of viscoelastic fluid through a channel with non-uniform cross-section.  相似文献   

15.
A two-fluid model (TFM) of multiphase flows based on the kinetic theory and small frictional limit boundary condition of granular flow was used to study the behavior of dense to dilute gas–solid flows in vertical pneumatic conveyor. An axisymmetric 2-dimensional, vertical pipe with 5.6 m length and 0.01 m internal diameter was chosen as the computation domain, same to that used for experimentation in the literature. The chosen particles are spherical, of diameter 1.91 mm and density 2500 kg/m3. Turbulence interaction between the gas and particle phases was investigated by Simonin's and Ahmadi's models and their numerical results were validated for dilute to dense conveying of particles. Flow regimes transition and pressure drop were predicted. Voidage and velocity profiles of each phase were calculated in radial direction at different lengths of the conveying pipe. It was found that the voidage has a minimum, and gas and solid velocities have maximum values along the center line of the conveying pipe and pressure drop has a minimum value in transition from dense slugging to dilute stable flow regime. Slug length and pressure fluctuation reduction were predicted with increasing gas velocity, too. It is shown that solid phase turbulence plays a significant role in numerical prediction of hydrodynamics of conveyor and the capability of particles turbulence models depends on tuning parameters of slip-wall boundary condition.  相似文献   

16.
In this paper, an immersed boundary method for simulating inviscid compressible flows governed by Euler equations is presented. All the mesh points are classified as interior computed points, immersed boundary points (interior points closest to the solid boundary), and exterior points that are blanked out of computation. The flow variables at an immersed boundary point are determined via the approximate form of solution in the direction normal to the wall boundary. The normal velocity is evaluated by applying the no‐penetration boundary condition, and therefore, the influence of solid wall in the inviscid flow is taken into account. The pressure is computed with the local simplified momentum equation, and the density and the tangential velocity are evaluated by using the constant‐entropy relation and the constant‐total‐enthalpy relation, respectively. With a local coordinate system, the present method has been extended easily to the three‐dimensional case. The present work is the first endeavor to extend the idea of hybrid Cartesian/immersed boundary approach to compressible inviscid flows. The tedious task of handling multi‐valued points can be eliminated, and the overshoot resulting from the extrapolation for the evaluation of flow variables at exterior points can also be avoided. In order to validate the present method, inviscid compressible flows over fixed and moving bodies have been simulated. All the obtained numerical results show good agreement with available data in the literature. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

17.
A mathematical model is developed for saturated flow of a Newtonian fluid in a thermoelastic, homogeneous, isotropic porous medium domain under nonisothermal conditions. The model contains mass, momentum and energy balance equations. Both the momentum and energy balance equations have been developed to include a Forchheimer term which represents the interaction at the solid-fluid interface at high Reynolds numbers. The evolution of these equations, following an abrupt change in both fluid pressure and temperature, is presented. Using a dimensional analysis, four evolution periods are distinguished. At the very first instant, pressure, effective stress, and matrix temperature are found to be disturbed with no attenuation. During this stage, the temporal rate of pressure change is linearly proportional to that of the fluid temperature. In the second time period, nonlinear waves are formed in terms of solid deformation, fluid density, and velocities of phases. The equation describing heat transfer becomes parabolic. During the third evolution stage, the inertial and the dissipative terms are of equal order of magnitude. However, during the fourth time period, the fluid's inertial terms subside, reducing the fluid's momentum balance equation to the form of Darcy's law. During this period, we note that the body and surface forces on the solid phase are balanced, while mechanical work and heat conduction of the phases are reduced.  相似文献   

18.
The classical potential formulation of inviscid transonic flows is modified to account for non-isentropic effects. The density is determined in terms of the speed as well as the pressure, which in turn is calculated from a second-order mixed-type equation derived via differentiating the momentum equations. The present model differs in general from the exact inviscid Euler equations since the flow is assumed irrotational. On the other hand, since the shocks are not isentropic, they are weaker and are placed further upstream compared to the classical potential solution. Furthermore, the streamline leaving the aerofoil does not necessarily bisect the trailing edge. Results for the present conservative calculations are presented for non-lifting and lifting aerofoils at subsonic and transonic speeds and compared to potential and Euler solutions.  相似文献   

19.
The equations for the second moments of the dispersed-phase velocity and temperature fluctuations are used for calculating gas-suspension jet flows within the framework of the Euler approach. The advantages of introducing the equations for the second moments of the particle velocity fluctuations has previously been quite convincingly demonstrated with reference to the calculation of two-phase channel boundary flows [9–11]. The flows considered below have a low solid particle volume concentration, so that interparticle collisions can be neglected and, consequently, the stochastic motion of the particles is determined exclusively by their involvement in the fluctuating motion of the carrier flow. In addition to the equations for the turbulent energy of the gas and its dissipation, the calculation scheme includes the equations for the turbulent energy and turbulent heat transfer of the solid phase; however, the model constructed does not contain additional empirical constants associated with the presence of the particles in the flow.Translated from Izvestiya Rossiiskoi Akademii Nauk, Mekhanika Zhidkosti i Gaza, No.3, pp. 69–80, May–June, 1992.  相似文献   

20.
蔡少斌  杨永飞  刘杰 《力学学报》2021,53(8):2225-2234
为了研究深层油气资源在岩石多孔介质内的运移过程, 使用一种基于Darcy-Brinkman-Biot的流固耦合数值方法, 结合传热模型, 完成了Duhamel-Neumann热弹性应力的计算, 实现了在孔隙模拟多孔介质内的考虑热流固耦合作用的两相流动过程. 模型通过求解Navier-Stokes方程完成对孔隙空间内多相流体的计算, 通过求解Darcy方程完成流体在岩石固体颗粒内的计算, 二者通过以动能方式耦合的形式, 计算出岩石固体颗粒质点的位移, 从而实现了流固耦合计算. 在此基础上, 加入传热模型考虑温度场对两相渗流过程的影响. 温度场通过以产生热弹性应力的形式作用于岩石固体颗粒, 总体上实现热流固耦合过程. 基于数值模型, 模拟油水两相流体在二维多孔介质模型内受热流固耦合作用的流动过程. 研究结果表明: 热应力与流固耦合作用产生的应力方向相反, 使得总应力比单独考虑流固耦合作用下的应力小; 温度的增加使得模型孔隙度增加, 但当注入温差达到150 K后, 孔隙度不再有明显增加; 温度的增加使得水相的相对渗流能力增加, 等渗点左移.   相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号