首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 24 毫秒
1.
A novel extracellular lipase with organic solvent tolerance was isolated from a local Pseudomonas species. The lipase gene was cloned and expressed in Escherichia coli as a heterologous host and purified by affinity chromatography. The activity of purified lipase was investigated in the presence of imidazolium-based ionic liquids (ILs) such as EMIM[Cl], BMIM[Cl], and HMIM[Cl]. It has been found that the activity of treated lipase with ILs was higher than untreated control in the hydrolysis reaction. Also, the results indicated that the enzymatic activity strongly depends on IL concentration in reaction media. The best concentration of the IL was 30%, 45%, and 50% (v/v) for HMIM[Cl], BMIM[Cl], and EMIM[Cl], respectively. Additionally, the enzyme exhibited excellent stability in the presence of 25% of n-hexane, toluene, acetone, and t-butanol. The optimum values of pH and temperature were determined 10 and 55 °C, respectively. The K (m) and V (max) values were calculated 0.4 mM and 1.92 U/ml, respectively, using p-nitrophenyl palmitate as substrate. With respect to the biochemical properties of the newly isolated lipase such as high-level stability and noticeable activity in the presence of organic solvents and ionic liquids, the newly isolated lipase seems to be a good candidate for environmental and industrial processes carried out in non-aqueous media.  相似文献   

2.
The use of enzymes as valuable catalysts in organic solvents has been well documented. However, some of their features limit their application in organic synthesis, especially the frequently lower enzyme activity under nonaqueous conditions, which constitutes a major drawback in the application of enzymes in organic solvents. In addition, many enzymatic reactions are subject to substrate or product inhibition, leading to a decrease in the reaction rate and enantioselectivity. To overcome these drawbacks and to make enzymes more appealing to organic chemists, we demonstrate the use of cyclodextrins as regulators for the Pseudomonas cepacia lipase (PSL) and macrocyclic additives to enhance the reaction rate and enantioselectivity E in lipase-catalyzed enantioselective transesterification of 1-(2-furyl)ethanol in organic solvents. Both reaction rate and enantioselectivity were significantly enhanced by several orders of magnitude when using co-lyophilized lipase in the presence of cyclodextrins. The effect of cyclodextrin derivatives as well as solvents on the improvement of the reaction parameters has been studied. The observed enhancement was tentatively interpreted in terms of their ability to give a certain flexibility to the enzyme and to form a host-guest complex, thus avoiding product inhibition and leading to enhancement of the reaction rate and enantioselectivity. The effect of cyclodextrin additives on the enzyme morphology has been studied using scanning electron microscopy (SEM) and energy dispersive X-ray (EDX) of the co-lyophilized lipase with cyclodextrins. The ability of cyclodextrins to form a host-guest complex to avoid product inhibition, which leads to the observed enhancement, has been proved by NOESY, COSY, 13C and 1H NMR.  相似文献   

3.
有机相中固定化脂肪酶催化合成植物甾醇酯   总被引:3,自引:0,他引:3  
蒋振华  于敏  任立伟  周华  韦萍 《催化学报》2013,34(12):2255-2262
酶法合成植物甾醇酯具有反应条件温和、产物纯度和产量高等优点,但非水相酶催化的活性和稳定性普遍较低.本文以大孔树脂固定化脂肪酶为催化剂,并在催化过程中添加乳糖的类似物,构建了有机相高效合成植物甾醇酯的工艺过程.以酯化率为考察指标,对脂肪酶和反应溶剂进行筛选,对酯化条件进行优化,同时考察了糖的种类及添加量对酶催化性能的影响.结果表明,大孔树脂NKA吸附固定化的褶皱假丝酵母(Candida rugosa)脂肪酶(NKA-CRL)为最适宜的催化剂,以正己烷为反应介质,在酸醇摩尔比为2和添加酶蛋白质量7.5%的海藻糖的条件下,40°C反应10 h,酯化率达到96.6%.连续6次催化后,植物甾醇的酯化率仍维持在85.0%以上.  相似文献   

4.
The influence of eight different ionic liquid (IL) solvents on the stability of the lipase Candida antarctica lipase B (CAL-B) is investigated with molecular dynamics (MD) simulations. Considered ILs contain cations that are based either on imidazolium or guanidinium as well as nitrate, tetrafluoroborate or hexafluorophosphate anions. Partial unfolding of CAL-B is observed during high-temperature MD simulations and related changes of CAL-B regarding its radius of gyration, surface area, secondary structure, amount of solvent close to the backbone and interaction strength with the ILs are evaluated. CAL-B stability is influenced primarily by anions in the order NO(3)(-)? BF(4)(-) < PF(6)(-) of increasing stability, which agrees with experiments. Cations influence protein stability less than anions but still substantially. Long decyl side chains, polar methoxy groups and guanidinium-based cations destabilize CAL-B more than short methyl groups, other non-polar groups and imidazolium-based cations, respectively. Two distinct causes for CAL-B destabilization are identified: a destabilization of the protein surface is facilitated mostly by strong Coulomb interactions of CAL-B with anions that exhibit a localized charge and strong polarization as well as with polar cation groups. Surface instability is characterized by an unraveling of α-helices and an increase of surface area, radius of gyration and protein-IL total interaction strength of CAL-B, all of which describe a destabilization of the folded protein state. On the other hand, a destabilization of the protein core is facilitated when direct core-IL interactions are feasible. This is the case when long alkyl chains are involved or when particularly hydrophobic ILs induce major conformational changes that enable ILs direct access to the protein core. This core instability is characterized by a disintegration of β-sheets, diffusion of ions into CAL-B and increasing protein-IL van der Waals interactions. This process describes a stabilization of the unfolded protein state. Both of these processes reduce the folding free energy and thus destabilize CAL-B. The results of this work clarify the impact of ions on CAL-B stabilization. An extrapolation of the observed trends enables proposing novel ILs in which protein stability could be enhanced further.  相似文献   

5.
Immobilized enzymes have an advantage over enzymes free in solution in that they are easily recovered after completed reaction. In addition, immobilization often gives enhanced stability. Entrapment of an enzyme in the pores of a mesoporous material is an attractive procedure since the enzyme is immobilized without any covalent bonding to a support which may be detrimental to the catalytic performance. The objective of this work is to compare the encapsulation and catalytic performance of lipase from Mucor miehei and trypsin from bovine pancreas, two hydrolases with rather dissimilar properties and structures. We also demonstrate the importance of the pore dimensions and the pH for proper function of the encapsulated enzyme. Mesoporous silica particles (SBA-15) with three different pore sizes (50 Å, 60 Å and 89 Å) were synthesized and hexagonal structures with narrow pore size distributions were confirmed with TEM, SAXS and N2-adsorption. Lipase and trypsin were encapsulated separately in the silica particles and the results indicate distinct differences between the two enzymes, both in loading capacity and catalytic activity. For trypsin the encapsulation rate and the loading capacity were large with a maximum reached at pH 7.6. The largest product yield was obtained with the particles with 60 Å pores, however, the yield was significantly lower than with free trypsin. For lipase optimal encapsulation rate and loading capacity were reached with the particles with 89 Å pores at pH 6.0 but were low compared to trypsin. However, the catalytic activity of the encapsulated lipase was more than twice as large as for free lipase, which can be explained by an interfacial activation of lipase at the silica surface.  相似文献   

6.
Reactions catalyzed by supported enzymes present important advantages when compared with those in aqueous media or organic solvents: separation of enzymes from substrate is easily accomplished, enzyme stability may be improved, and control of the reaction products is more accurate. We present the experimental results of the kinetic study of ethyl acetate hydrolysis in gaseous phase catalyzed by a commercial immobilized lipase (Lipozyme IM; Novo Nordisk). The hydrolysis reaction was studied as a function of ethyl ester and water partial pressure at a constant temperature of 318 K. The amount of biocatalyst used was varied between 100 and 300 mg, and the reaction was studied in a flow-through glass microreactor. Under the conditions used, water was an important parameter in the gas-phase reaction. Activation energy was 24.8 kJ/mol and the overall order of reaction was one. Finally a Bi-Bi reaction mechanism is proposed.  相似文献   

7.
The use of modified sol–gel matrix to immobilize the enzyme Candida antartica lipase B (CALB) was investigated. Free hydroxyl groups on the matrix surface were exploited to covalently immobilize the enzyme. Based from the results, incorporating hydrophobic sol–gel precursor (ethyltrimethoxysilane) enhanced enzyme activity. An enzyme activity of 192.02 U/g beads with 80.88 % attachment was obtained. At alkaline pH, immobilization yield of enzyme increased. The attachment of enzyme on the surface of the matrix was confirmed by scanning electron microscope images. Covalently immobilized CALB on sol–gel supports has higher thermal stability with 2.7 times higher half-life compared to soluble enzymes at 60 °C. This enzyme immobilization system retains the enzyme residual activity even for repetitive use. Hence, the immobilization approach developed recommends its further application.  相似文献   

8.
Geotrichum sp. lipase modified with a combined method composed of crosslinking and bioimprinting was employed to selectively hydrolyze waste fish oil for enrichment of eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA) in glycerides. Crosslinked polymerization by monomer (polyethylene glycol 400 dimethyl acrylate), crosslinker (trimethylolpropane trimethylacrylate), and photoinitiator (benzoin methyl ether) coupled to bioimprinting using palmitic acid as imprint molecule, resulted in much more effective enzyme preparation used in aqueous hydrolysis reaction. Since the crosslinked polymerization modification maintained bioimprinted property and gave good dispersion of enzyme in reaction mixture, the crosslinked bioimprinted enzyme exhibited higher hydrolysis temperature, enhanced specific activity, shorter hydrolysis time, and better operational stability compared to free lipase. Crude fish oil was treated at 45 °C with this crosslinked bioimprinted lipase for 8 h, and 46% hydrolysis degree resulted in the production of glycerides containing 41% of EPA and DHA (EPA+DHA), achieving 85.7% recovery of initial EPA and DHA. The results suggested that bioimprinted enzymes did not lose their induced property in aqueous environment when prepared according to the described crosslinking–bioimprinting method. It could also be seen that the crosslinked bioimprinted lipase was effective in producing glycerides that contained a higher concentration of polyunsaturated fatty acid with better yield.  相似文献   

9.
Lipase from Candida rugosa was immobilized by entrapment on poly(N-vinyl-2-pyrrolidone-co-2-hydroxyethyl methacrylate)(poly[VP-co-HEMA]) hydrogel, and divinylbenzene was the crosslinking agent. The immobilized enzymes were used in the esterification reaction of oleic acid and butanol in hexane. The activities of the immobilized enzymes and the leaching ability of the enzyme from the support with respect to the different compositions of the hydrogels were investigated. The thermal, solvent, and storage stability of the immobilized lipases was also determined. Increasing the percentage of composition of VP from 0 to 90, which corresponds to the increase in the hydrophilicity of the hydrogels, increased the activity of the immobilized enzyme. Lipase immobilized on VP(%):HEMA(%) 90∶10 exhibited the highest activity. Lipase immobilized on VP(%):HEMA(%) 50∶50 showed the highest thermal, solvent, storage, and operational stability compared to lipase immobilized on other compositions of hydrogels as well as the native lipase.  相似文献   

10.
Carbon-carbon bonds by hydrolytic enzymes   总被引:2,自引:0,他引:2  
Enzymes are efficient catalysts in synthetic chemistry, and their catalytic activity with unnatural substrates in organic reaction media is an area attracting much attention. Protein engineering has opened the possibility to change the reaction specificity of enzymes and allow for new reactions to take place in their active sites. We have used this strategy on the well-studied active-site scaffold offered by the serine hydrolase Candida antarctica lipase B (CALB, EC 3.1.1.3) to achieve catalytic activity for aldol reactions. The catalytic reaction was studied in detail by means of quantum chemical calculations in model systems. The predictions from the quantum chemical calculations were then challenged by experiments. Consequently, Ser105 in CALB was targeted by site-directed mutagenesis to create enzyme variants lacking the nucleophilic feature of the active site. The experiments clearly showed an increased reaction rate when the aldol reaction was catalyzed by the mutant enzymes as compared to the wild-type lipase. We expect that the new catalytic activity, harbored in the stable protein scaffold of the lipase, will allow aldol additions of substrates, which cannot be reached by traditional aldolases.  相似文献   

11.
《中国化学会会志》2018,65(4):452-458
Lipase‐catalyzed synthesis of lauroyl glucose ester was continuously performed in a biphasic system consisting of supercritical CO2 and an ionic liquid (IL). Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy are employed to identify the product lauroyl glucose ester. The effects of reaction pressure, temperature, substrate flow rate, the amount of enzyme, and the amount of IL on the glucose conversion rate are investigated. The highest glucose conversion of up to 95.5% could be achieved at the optimal condition, which is higher than that in the pure IL. The enzyme activity in the biphasic system was 18.19 μmol/g/min, which is much higher than that in the pure IL. The continuous reaction in the binary system could last for 10 h at high enzyme activity. The combination of supercritical CO2 and ILs could not only improve the reaction rate and yield, which are attributed to the fast mass transfer rate and enhanced enzyme activity and lifespan, but also make the product separation and enzyme/ILs recycling easier.  相似文献   

12.
L-asparaginase (ASNase) is an amidohydrolase that can be used as a biopharmaceutical, as an agent for acrylamide reduction, and as an active molecule for L-asparagine detection. However, its free form displays some limitations, such as the enzyme’s single use and low stability. Hence, immobilization is one of the most effective tools for enzyme recovery and reuse. Silica is a promising material due to its low-cost, biological compatibility, and tunable physicochemical characteristics if properly functionalized. Ionic liquids (ILs) are designer compounds that allow the tailoring of their physicochemical properties for a given task. If properly designed, bioconjugates combine the features of the selected ILs with those of the support used, enabling the simple recovery and reuse of the enzyme. In this work, silica-based supported ionic liquid-like phase (SSILLP) materials with quaternary ammoniums and chloride as the counterion were studied as novel supports for ASNase immobilization since it has been reported that ammonium ILs have beneficial effects on enzyme stability. SSILLP materials were characterized by elemental analysis and zeta potential. The immobilization process was studied and the pH effect, enzyme/support ratio, and contact time were optimized regarding the ASNase enzymatic activity. ASNase–SSILLP bioconjugates were characterized by ATR-FTIR. The bioconjugates displayed promising potential since [Si][N3444]Cl, [Si][N3666]Cl, and [Si][N3888]Cl recovered more than 92% of the initial ASNase activity under the optimized immobilization conditions (pH 8, 6 × 10−3 mg of ASNase per mg of SSILLP material, and 60 min). The ASNase–SSILLP bioconjugates showed more enhanced enzyme reuse than reported for other materials and immobilization methods, allowing five cycles of reaction while keeping more than 75% of the initial immobilized ASNase activity. According to molecular docking studies, the main interactions established between ASNase and SSILLP materials correspond to hydrophobic interactions. Overall, it is here demonstrated that SSILLP materials are efficient supports for ASNase, paving the way for their use in the pharmaceutical and food industries.  相似文献   

13.
The study of enzyme function often involves a multi-disciplinary approach. Several techniques are documented in the literature towards determining secondary and tertiary structures of enzymes, and X-ray crystallography is the most explored technique for obtaining three-dimensional structures of proteins. Knowledge of three-dimensional structures is essential to understand reaction mechanisms at the atomic level. Additionally, structures can be used to modulate or improve functional activity of enzymes by the production of small molecules that act as substrates/cofactors or by engineering selected mutants with enhanced biological activity. This paper presentes a short overview on how to streamline sample preparation for crystallographic studies of treated enzymes. We additionally revise recent developments on the effects of pressurized fluid treatment on activity and stability of commercial enzymes. Future directions and perspectives on the the role of crystallography as a tool to access the molecular mechanisms underlying enzymatic activity modulation upon treatment in pressurized fluids are also addressed.  相似文献   

14.
Enhanced catalytic activity of lipase encapsulated in PCL nanofibers   总被引:1,自引:0,他引:1  
Use of biocatalysis for industrial synthetic chemistry is on the verge of significant growth. Enzyme immobilization as an effective strategy for improving the enzyme activity has emerged from developments especially in nanoscience and nanotechnology. Here, lipase from Burkholderia cepacia (LBC), as an example of the luxuriant enzymes, was successfully encapsulated in polycaprolactone (PCL) nanofibers, proven by X-ray photoelectron spectroscopy (XPS) and atomic force microscopy (AFM). Evaluated in both organic and aqueous medium, the activation factor of the encapsulated enzymes in the hydrolysis reaction was generally higher than that in the transesterification reaction. Enhanced catalytic activities were found when 5-20 w/w % of LBC was loaded. The effect of different solvents pretreatment on the activity of immobilized LBC was also investigated. The highest activation factor was found up to 14 for the sample containing acetone-treated LBC/PCL (10 w/w %). The encapsulated lipase reserved 50% of its original activity after the 10th run in the transesterification reaction in hexane medium. The mechanism of activation of lipase catalytic ability based on active PCL nanofiberous matrix is proposed.  相似文献   

15.
Room temperature ionic liquids (ILs) are used as a green recyclable reaction media for the α-monohalogenation of 1,3-diketones, β-keto-esters and cyclic ketones with N-halosuccinimides in excellent yields in the absence of a catalyst. The recovered ionic liquid was reused five to six times with consistent activity.  相似文献   

16.
An enzymatic membrane reactor (EMR) for enantioseparation of (R,S)-ketoprofen via Candida antarctica lipase B (CALB) as biocatalyst was investigated. A comparative study of free and immobilized CALB was further conducted. The catalytic behaviour of CALB in an EMR was affected by the process parameters of enzyme load, substrate concentration, substrate molar ratio, lipase solution pH, reaction temperature, and substrate flow rate. Immobilization of CALB in the EMR was able to reduce the amount of enzyme required for the enantioseparation of (R,S)-ketoprofen. Immobilized CALB in the EMR assured higher reaction capacity, better thermal stability, and reusability. It was also found to be more cost effective and practical than free CALB in a batch reactor.  相似文献   

17.
In this Minireview, the state of the art in the use of ionic liquids (ILs) and deep eutectic solvents (DESs) as alternative reaction media for biocatalytic processes and biomass conversion is presented. Initial, proof‐of‐concept studies, more than a decade ago, involved first‐generation ILs based on dialkylimidazolium cations and non‐coordinating anions, such as tetrafluoroborate and hexafluorophosphate. More recently, emphasis has switched to more environmentally acceptable second‐generation ILs comprising cations, which are designed to be compatible with enzymes and, in many cases are derived from readily available, renewable resources, such as cholinium salts. Protic ionic liquids (PILs), prepared simply by mixing inexpensive amines and acids, are particularly attractive from both an environmental and economic viewpoint. DESs, prepared by mixing inexpensive salts with, preferably renewable, hydrogen‐bond donors such as glycerol and amino acids, have also proved suitable reaction media for biocatalytic conversions. A broad range of enzymes can be used in ILs, PILs and DESs, for example lipases in biodiesel production. These neoteric solvents are of particular interest, however, as reaction media for biocatalytic conversions of substrates that have limited solubility in common organic solvents, such as carbohydrates, nucleosides, steroids and polysaccharides. This has culminated in the recent focus of attention on their use as (co)solvents in the pretreatment and saccharification of lignocellulose as the initial steps in the conversion of second‐generation renewable biomass into biofuels and chemicals. They can similarly be used as reaction media in subsequent conversions of hexoses and pentoses into platform chemicals.  相似文献   

18.
京尼平交联磁性壳聚糖微球的制备及其脂肪酶的固定化   总被引:1,自引:1,他引:0  
唐荣华  段玮  陈波 《应用化学》2013,30(8):922-926
采用反相悬浮法与溶胶凝胶法结合制备磁性壳聚糖微球,并以此为载体,京尼平为交联剂,脂肪酶为模型酶进行固定化,研究了酶固定化的最优条件和固定化酶的性质。结果表明,在京尼平浓度为0.6 g/L、交联温度为55 ℃、交联时间8 h,固定化酶的比活力最大,为4.31 U/g。固定化酶在25~35 ℃,pH值在8.0有最大活性,其米氏常数Km为0.26 mol/L。同时,固定化酶具有良好的热稳定性及pH稳定性,可重复利用,且能进行磁分离。  相似文献   

19.
Ge J  Lu D  Wang J  Yan M  Lu Y  Liu Z 《The journal of physical chemistry. B》2008,112(45):14319-14324
The assembly of a monomer around an enzyme as the essential step in the fabrication of enzyme nanogel by in situ polymerization was illustrated by molecular dynamics simulation and evidenced by a fluorescence resonance energy transfer spectrum, using lipase/acrylamide as a model system. The subsequent polymerization generated a hydrophilic gel network which not only strengthened the protein structural integrity via multipoint linkage but also increased the number of intramolecular H-bonds of the encapsulated protein, as suggested by the blue shift of the fluorescence spectrum of the encapsulated lipase. This greatly enhanced the stability of lipase at high temperature, as experimentally demonstrated. The exclusion of polar solvent molecules from the encapsulated enzyme, in contrast to the enrichment of water molecules, due to the presence of a hydrophilic gel network was displayed. This established a hydrophilic microenvironment for the encapsulated protein and thus gave the encapsulated protein an enhanced tolerance to the organic solvent, as experimentally observed in the present study and reported elsewhere. These results have given a molecular insight into the enzyme nanogel as well as its high potential as a robust enzyme model for an expended application spectrum of enzymatic catalysis.  相似文献   

20.
秦丽娜  喻晓蔚  徐岩 《催化学报》2011,(10):1639-1644
研究了非水有机溶剂体系中脂肪酶不对称转酯化拆分(R,S)-α-苯乙醇反应,比较了15种不同微生物来源的脂肪酶,从中优选出催化活性及对映选择性较高的脂肪酶Lipase PS,系统考察了影响该酶催化不对称转酯化反应的关键因素,获得了优化的催化拆分工艺条件.结果表明,脂肪酶Lipase PS在非水反应体系中,以正己烷为反应介...  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号