首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This paper solves the problem of the interaction of an electron and positron via the field of soft and hard photons with emission or absorption of a real photon. The interaction is interpreted as a third-order QED effect in the coordinate representation. The role of intermediate states with positive and negative frequencies is studied. A general expression is derived for the matrix elements of the operator of the effective electron-positron interaction energy for different types of quantum transitions. The expression makes it possible to calculate the probabilities of the corresponding transitions in the nonrelativistic approximation. Electric dipole transitions in the positronium atom accompanied by emission (absorption) of an optical photon are investigated. Two-particle wave functions of the positronium atom are used to introduce the concept of polarization fields inside the positronium atom. It is found that the polarization fields depend on the coordinates and time and on the choice of the pair of states between which a quantum transition with emission or absorption of a photon takes place. Zh. éksp. Teor. Fiz. 113, 471–488 (February 1998)  相似文献   

2.
在超冷费米系统中实现人造规范势的突破,吸引了许多新问题的研究,展现了许多新奇的物理现象.本文研究了在环阱中,具有自旋轨道耦合和塞曼作用的两体相互作用费米模型.通过平面波展开的方法,解析求解了两体费米系统的本征能态.系统的总动量为守恒量,可以在不同总动量空间中研究能谱.研究发现:随着塞曼相互作用增大,在不同总动量空间,两体费米系统的本征能量均逐渐降低,系统基态从总动量为零空间转变到有限值空间.从吸引到排斥相互作用,无塞曼相互作用时,基态总动量始终为零,有塞曼相互作用时,基态总动量从零转变为有限值.通过单粒子和基态动量分布研究,本文直观地揭示了由塞曼能级劈裂引起的基态转变.  相似文献   

3.
M. Apostol  M. Ganciu 《Physics letters. A》2010,374(48):4848-4852
The coherent interaction of the electromagnetic radiation with an ensemble of polarizable, identical particles with two energy levels is investigated in the presence of external electromagnetic fields. The coupled non-linear equations of motion are solved in the stationary regime and in the limit of small coupling constants. It is shown that an external electromagnetic field may induce a macroscopic occupation of both the energy levels of the particles and the corresponding photon states, governed by a long-range order of the quantum phases of the internal motion (polarization) of the particles. A lasing effect is thereby obtained, controlled by the external field. Its main characteristics are estimated for typical atomic matter and atomic nuclei. For atomic matter the effect may be considerable (for usual external fields), while for atomic nuclei the effect is extremely small (practically insignificant), due to the great disparity in the coupling constants. In the absence of the external field, the solution, which is non-analytic in the coupling constant, corresponds to a second-order phase transition (super-radiance), which was previously investigated.  相似文献   

4.
5.
The feasibility of resonance transfer of quantum information from one double-level atom to another that is at an arbitrary distance from the former one has been proved. Symmetric and antisymmetric combinations of the wave functions of individual atoms are considered. When taking into account the interatomic dipole–dipole interaction, a certain energy corresponds to each wave function. A solution has been found to a system of equations for the amplitudes of the probability that a resonance photon will be absorbed by one of the system atoms, and it has been shown that the interaction of the system with actual photons has the result that the wave function of the final state of the system can be represented as a linear combination of the functions < 00|, < 0n|, and < n0| corresponding to the ground and excited states of individual atoms. The amplitude of the probability of each of these states depends on the interatomic distance and on the parameters of the action of actual photons on atoms. Three types of solution to the system of equations have been investigated for the resonance and nonresonance absorption of photons and different interatomic distances. It has been shown that when atoms are at an infinite distance from one another, so that there is no dipole–dipole interaction of atoms, quantum information can be transferred from one atom to another with a characteristic time considerably shorter than the time it takes for a photon to cover the interatomic distance. This effect is referred to as the effect of quantum teleportation in a system of resonance atoms.  相似文献   

6.
7.
We consider the formation of entangled quantum states for an atomic Bose condensate interacting with an external electromagnetic field in a single-particle state under conditions of change in various regimes for exchange interaction processes. These states of the Bose system have high phase coherence and are accompanied by the generation of squeezed states of a new type in terms of the parameters defined by a combination of transition operators for the condensate atoms and external-field photons with an appropriate polynomial deformation of the algebra SU(2). We show that localized quantum structures corresponding to stable elementary excitations of the atoms and the field in the condensate can be formed in principle. We also analyze the purely quantum effects of collapse and revival for the level populations of the Bose condensate and the change in atomic statistics as well as determine the conditions for the formation of superstructure of these unsteady states for the Bose system.  相似文献   

8.
This paper solves the problem of the interaction, via the field of virtual photon field with the emission or absorption of a real photon, of two atomic electrons located at arbitrary distances from one another. The interaction is interpreted as a third-order QED effect in the coordinate representation. The role of intermediate states with positive and negative frequencies is studied. A general expression is derived for the matrix elements of the operator of the effective electron-electron interaction energy for different types of quantum transitions. The expression makes it possible to calculate the probabilities of the corresponding transitions and to examine various patterns of induction of polarizing fields by one atom at the point occupied by the other atom. The exchange of virtual photons between the atoms located at arbitrary distances from one another is shown to lead to additional terms in the operators of spin-orbit and spin-spin coupling of the atomic electrons, over and above those in the corresponding Breit operators. It is shown that there is an important difference between the induction of polarizing fields and the transfer of optical photons. In particular, it is found that when polarizing fields are induced, a situation may arise in which the disappearance (production) of a photon takes place at the point occupied by one atom, while absorption (emission) of the same photon occurs at the place occupied by the other atom. A block diagram of an experimental device that could be used to study this property of polarizing fields is presented. Finally, a method of deriving integral field equations is proposed. The method is based on allowing for polarizing fields, and its effectiveness is demonstrated by the example of electric dipole and spin transitions in the spectrum of interacting atomic electrons. Zh. éksp. Teor. Fiz. 114, 1555–1577 (November 1998)  相似文献   

9.
We show that a Rabi‐splitting of the states of strongly interacting electrons in parallel quantum dots embedded in a short quantum wire placed in a photon cavity can be produced by either the para‐ or the dia‐magnetic electron‐photon interactions when the geometry of the system is properly accounted for and the photon field is tuned close to a resonance with the electron system. We use these two resonances to explore the electroluminescence caused by the transport of electrons through the one‐ and two‐electron ground states of the system and their corresponding conventional and vacuum electroluminescense as the central system is opened up by coupling it to external leads acting as electron reservoirs. Our analysis indicates that high‐order electron‐photon processes are necessary to adequately construct the cavity‐photon dressed electron states needed to describe both types of electroluminescence.  相似文献   

10.
Radiation reaction (but, more generally, fluctuations and dissipation) occurs when a system interacts with a heat bath, a particular case being the interaction of an electron with the radiation field. We have developed a general theory for the case of a quantum particle in a general potential (but, in more detail, an oscillator potential) coupled to an arbitrary heat bath at arbitrary temperature, and in an external time-dependent c-number field. The results may be applied to a large variety of problems in physics but we concentrate by showing in detail the application to the blackbody radiation heat bath, giving an exact result for the radiation reaction problem which has no unsatisfactory features such as the runaway solutions associated with the Abraham–Lorentz theory. In addition, we show how atomic energy and free energy shifts due to temperature may be calculated. Finally, we give a brief review of applications to Josephson junctions, quantum statistical mechanics, mesoscopic physics, quantum information, noise in gravitational wave detectors, Unruh radiation and the violation of the quantum regression theorem.  相似文献   

11.
A new method is proposed for calculating the energy spectrum and the wave functions of N-electron quantum dots with an arbitrary confining potential. The method consists in expansion with respect to a dimensionless quantum parameter 1/Q, which is expressed in terms of the ratio of the characteristic Coulomb energy of electron-electron interaction to the characteristic energy of one-particle transition in a confining potential. Two-electron quantum dots with a parabolic confining potential in an external magnetic field are considered. Strongly correlated states of the system and the spin rearrangement in a strong magnetic field are analyzed. Analytic expressions are obtained for the energy and the wave functions of the system. It is shown that restriction of the analysis only to the first three terms in the quantum-parameter expansion gives an accuracy of one percent when calculating the energy even for values of Q on the order of unity, i.e., for the presently implementable GaAs quantum dots. The expressions for energy obtained are in a good agreement with the experimental data for quantum dots in a perpendicular magnetic field.  相似文献   

12.
We present an effective numerical procedure to calculate the binding energies and wave functions of the hydrogen-like impurity states in a quantum dot (QD) with parabolic confinement. The unknown wave function was expressed as an expansion over one-dimensional harmonic oscillator states, which describes the electron's movement along the defined z-axis. Green's function technique used to obtain the solution of Schredinger equation for electronic states in a transverse plane. Binding energy of impurity states is defined as poles of the wave function. The dependences of the binding energy on the position of an impurity, the size of the QD and the magnetic field strength are presented and discussed.  相似文献   

13.
We report on calculation of spin-dependent thermal transport through a quantum ring with the Rashba spin-orbit interaction. The quantum ring is connected to two electron reservoirs with different temperatures. Tuning the Rashba coupling constant, degenerate energy states are formed leading to a suppression of the heat and thermoelectric currents. In addition, the quantum ring is coupled to a photon cavity with a single photon mode and linearly polarized photon field. In a resonance regime, when the photon energy is approximately equal to the energy spacing between two lowest degenerate states of the ring, the polarized photon field can significantly control the heat and thermoelectric currents in the system. The roles of the number of photon initially in the cavity, and electron–photon coupling strength on spin-dependent heat and thermoelectric currents are presented.  相似文献   

14.
A modified Jaynes-Cummings model which consists of a two-level atom interacting with two modes of the electromagnetic field is introduced. More precisely we have considered a Hamiltonian model that includes two types of interaction: One is the field-field (frequency converter type) and the other is the atom-field interaction. By invoking a canonical transformation an exact solution of the wave function in the Schrödinger picture is obtained. The result presented in this context is used to discuss the atomic inversion as well as the entropy squeezing and variance squeezing phenomena. We have shown that the existence of the second field coupling parameter reduces the amount of squeezing in all quadratures, while the effect of the detuning parameter would lead to the superstructure phenomenon which becomes more pronounced upon increasing the mean photon numbers, in the states which are taken to be converter states.  相似文献   

15.
A model of the free electron laser is proposed which is based on the classical current of the electron in the wiggler field interacting with a quantized radiation field. To calculate the gain, the quantum recoil for the processes of n-photon emission and absorption must be put in by hand from kinematical considerations. Apart from a spontaneous emission term the gain agrees essentially with the usual small signal expression, for the radiation field being in either an eigenstate of photon number or in a coherent state. The distribution of the electrons after the interaction is, however, essentially quantum mechanical.  相似文献   

16.
With the Breit interaction and quantum electrodynamics corrections considered, relativistic configuration interaction calculations have been carried out in the extended optimal level scheme using multi-configuration Dirac-Fock wave functions on the 204 energy levels and electric dipole transitions of Ar XIV. The results of electric dipole transitions are in good agreement with experiments. Among the energy levels calculated, the lowest 125 levels are in good agreement with available experimental and other theoretical ones, and the other 79 levels are new ones obtained by the present work. This wide range of atomic energy levels is useful in astrophysics and plasma physics.  相似文献   

17.
With the concept of negative photon and the K-photon J C model, we investigate analytically the effect of virtual photon field on the collapse revival effect of atomic inversion and squeezing of atom, we find that there is a significant effect of virtual photon field on atomic inversion and squeezing of atom; with the one-photon model as an example, we find that the squeezing of atom occurs periodically, the time and times of squeezing are only related to the resonance frequency and the amplitude of squeezing related to coupling constant of atom field, mean photon number and resonance frequency; also we show that the effect of squeezing of atom does not exist within rotating wave approximation if K≥3. Taking the approach of nearest-neighboring spectrum in the quantum chaos field, we investigate the properties of energy spectrum in one-photon JC model and show that the integrable region,non-integrable region and transition region of this system can be illustrated by a phase diagram;also we discuss the influence of interaction of atoms on spectrum and Δ3 statistics of adjacent energy levels, we find that the influence of interaction is little obvious in strong field but takes great important role in weak field.  相似文献   

18.
A nonrelativistic quantum theory for the nonresonant Compton scattering of an X-ray photon by a free many-electron atom with an open shell in the ground state has been constructed in the single-configuration Hartree-Fock approximation outside the impulse approximation widely used in the literature. The transition to an atom with closed shells reproduces the results obtained previously in [6, 7]. The results of a test calculation for atoms with open (Ti, Fe) and closed (Zn) 3d core shells are presented. The effects of the radial relaxation of one-electron states in the field of core vacancies have been taken into account. The results of the calculation agree well with the experimental results [15, 16]. It has been established that the results of the impulse approximation in the investigated X-ray photon energy ranges disagree with those of our theory not only quantitatively but also qualitatively. In particular, the impulse approximation near the elastic (Thomson and Rayleigh) scattering line leads to a gross overestimation of the contributions from the deep atomic shells involved in the inelastic photon scattering only virtually to the scattering probability. The presented theory is general in character and its applicability to a particular element of the Mendeleev table with an open core shell or to a many-electron atomic ion is limited only by the requirement that the nonrelativistic Hartree-Fock approximation be properly used in describing the scattering-state wave functions.  相似文献   

19.
In this study,we show how a static magnetic field can control photon-induced electron transport through a quantum dot system coupled to a photon cavity.The quantum dot system is connected to two electron reservoirs and exposed to an external perpendicular static magnetic field.The propagation of electrons through the system is thus influenced by the static magnetic and the dynamic photon fields.It is observed that the photon cavity forms photon replica states controlling electron transport in the system.If the photon field has more energy than the cyclotron energy,then the photon field is dominant in the electron transport.Consequently,the electron transport is enhanced due to activation of photon replica states.By contrast,the electron transport is suppressed in the system when the photon energy is smaller than the cyclotron energy.  相似文献   

20.
A new mechanism of transitions of an electronic system from the ground state to states with excitation energies exceeding many times the energy of a light photon initiating the transitions has been considered. This mechanism is based on the so-called optical “trampoline” effect: one of the interacting electrons receives energy from another electron and, simultaneously absorbing a photon , overcomes the energy gap significantly exceeding . Ionization of deep quantum wells by low-frequency light of moderate intensity due to the optical trampoline effect was calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号