首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Capillary zone electrophoresis was used for the enantiomeric separation of six β-blocking drug substances with β-cyclodextrin (β-CD) and its derivatives as chiral selectors employing an uncoated capillary. The effects of pH value and composition of the background electrolyte (BGE), the capillary temperature and running voltage have been investigated. The results showed that β-CD type, concentration and pH value have a strong influence on the efficiency of the chiral separation. Carboxymethyl-β-cyclodextrin (CM-β-CD) gave a baseline enantiomeric separation for six β-blocking drug substances under optimal conditions, whereas the β-CD, hydroxypropyl-β-cyclodextrin (HP-β-CD) showed no chiral recognition. The potential and capillary temperature did not have a great effect on enantiomer resolution.  相似文献   

2.
A fast capillary electrophoretic method is described for the separation and determination of the enantiomers of the novel wake-promoting agent, modafinil. Several parameters affecting the separation were studied, including the type and concentration of chiral selector, buffer pH, buffer concentration, voltage and temperature. Good chiral separation of the racemic mixture was achieved in less than 5 min with resolution factor Rs?=?2.51, using a bare fused-silica capillary and a background electrolyte (BGE) of 25 mM H3PO4?1 M tris solution; pH 8.0; containing 30 mg mL?1 of sulfated-β-cyclodextrin (S-β-CD). The separation was carried out in normal polarity mode at 25 ?C, 18 kV and using hydrostatic injection. Acceptable validation criteria for selectivity, linearity, precision, and accuracy were included. The developed method was successfully applied to the assay of enantiomers of modafinil in pharmaceutical formulations. The computational calculations for the enantiomeric inclusion complexes rationalized the reasons for the different migration times between the modafinil enantiomers.  相似文献   

3.
Summary Six different cyclodextrins with varying cavity size and rim substitution were used as chiral agents for the enantiomeric separation of eight chromane compounds or analogues using capillary electrophoresis. It is shown that the cyclodextrin type and concentration have a large influence on the enantiomeric separation obtained for these compounds. A chiral resolution of 1.4 or better could be obtained for all the substances with either substituted heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin or unsubstituted γ-cyclodextrin as the chiral selector. The influence of the γ-cyclodextrin concentration, ionic strength and pH on the chiral separations was also investigated with a multivariate screening design. The detection limit and resolution of the present method allow determinations of the investigated compounds down to a chiral impurity of less than 0.1 % (area/area).  相似文献   

4.
Selectively modified 6,6'-dideoxy-6,6'-L-diamino-beta-cyclodextrins (AB, AC, AD) were successfully used as chiral selectors for the enantiomeric separation of hydroxy acids and carboxylic acids (in particular, phenoxyalkanoic acid herbicides) in capillary electrophoresis (CE). Chiral separations were obtained at a low selector concentration (1 mM) with good enantioselectivity and resolution factors. Separations were optimized as a function of pH. The different position of the charged groups on the upper rim greatly influenced the separation, accounting for electrostatic interactions between the protonated amino groups of the cyclodextrins (CDs) and the carboxylate of the selectands. The best enantiomeric separation of hydroxy acids was obtained with the AC regioisomer, whereas carboxylic acids were well resolved only by the AB regioisomer. A recognition model is proposed, based on two-dimensional nuclear magnetic resonance (2-D NMR) experiments, in which the orientation of the guest in the inclusion complex is determined by the electrostatic interactions between the selectand and the CD upper rim.  相似文献   

5.
A capillary electrophoretic method for the separation of the aminoglutethimide (AGT) enantiomers using methylated-β-cyclodextrin (M-β-CD) as chiral selector is described. Several parameters affecting the separation were studied, including the type and concentration of chiral selector, buffer pH, voltage and temperature. Good chiral separation of the racemic mixture was achieved in less than 9 min with resolution factor Rs = 2.1, using a fused-silica capillary and a background electrolyte (BGE) of tris-phosphate buffer solution (50 mmol L−1, pH 3.0) containing 30 mg mL−1 of M-β-CD. The separation was carried out in normal polarity mode at 25 °C, 16 kV and using hydrostatic injection. Acceptable validation criteria for selectivity, linearity, precision, and accuracy/recovery were included. The proposed method was successfully applied to the assay of AGT enantiomers in pharmaceutical formulations. The computational calculations for the inclusion complexes of the R- and S-AGT-M-β-CD rationalized the reasons for the different migration times between the AGT enantiomers.  相似文献   

6.
以磺丁基-β-环糊精作为手性添加剂利用毛细管电泳成功地分离了杀鼠灵对映体,并系统地考察了碘丁基-β-环糊精浓度,缓冲溶液pH值,缓冲溶液浓度,有机添加剂种类和浓度以及电压等分离条件对其分离的影响,发现通过利用带电环糊精,调节分离条件,可方便地控制出峰顺序。  相似文献   

7.
The enantiomers of imperanene, a novel polyphenolic compound of Imperata cylindrica (L.), were separated via cyclodextrin-modified capillary electrophoresis. The anionic form of the analyte at pH 9.0 was subject to complexation and enantioseparation CE studies with neutral and charged cyclodextrins. As chiral selectors 27 CDs were applied differing in cavity size, sidechain, degree of substitution (DS) and charge. Three hydroxypropylated and three sulfoalkylated CD preparations provided enantioseparation and the migration order was successfully interpreted in each case in terms of complex mobilities and stability constants. The best enantioresolution (R(S) =?1.26) was achieved using sulfobutyl-ether-γ-CD (DS ~4), but it could be enhanced by extensive investigations on dual selector systems. After optimization (CD concentrations and pH) R(S) =?4.47 was achieved using a 12.5 mM sulfobutyl-ether-γ-CD and 10 mM 6-monodeoxy-6-mono-(3-hydroxy)-propylamino-β-cyclodextrin dual system. The average stoichiometry of the complex was determined with Job's method using NMR-titration and resulted in a 1:1 complex for both (2-hydroxy)propyl-β- and sulfobutyl-ether-γ-CD. Further NMR experiments suggest that the coniferyl moiety of imperanene is involved in the host-guest interaction.  相似文献   

8.
Data on the use of two chiral selectors, namely 18-crown-6 tetracarboxylic acid and a negatively charged cyclodextrin derivative (sulfated-β-cyclodextrin or carboxymethyl-β-cyclodextrin), in the same background electrolyte are presented. The use of such dual systems has a considerable influence on the resolution, as illustrated for the separation of tryptophan derivatives. Reduction of the consumption of chiral selector without significant loss in resolution was obtained by only partly filling the capillary and applying a run buffer without selector. This is illustrated for the chiral separation of tryptophan hydroxamate and the diastereomeric and enantiomeric separation of the dipeptide α/b-AspPhe-OMe.  相似文献   

9.
A method for capillary electrophoretic enantiomeric separation of a racemic clenbuterol has been established with hydroxypropyl-β-cyclodextrin as the chiral selector. General equations and data analysis are presented to relate mobility to the equilibrium constants in simple binding equilibria and used to determine binding constants and thermodynamic parameters for host-guest complexation of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin as a selector. The effects of β-cyclodextrin type and concentration, buffer type, concentration and pH, as well as separation voltage and capillary temperature were investigated in detail. A maximal resolution of 6.78 was obtained. The binding constants of the host-guest complex of clenbuterol enantiomers with hydroxypropyl-β-cyclodextrin, K R-CD and K S-CD are 22.50 and 43.09 l mol-1, respectively.  相似文献   

10.
Our recent extended peak resolution equation of capillary electrophoresis has been combined with the multiple equilibria-based electrophoretic mobility model of chiral separations to describe peak resolution as a function of the composition of the background electrolyte (pH and the β-cyclodextrin concentration) and a function of the operating variables (effective portion of the applied potential, dimensionless electroosmotic flow coefficient). Using the previously determined model parameters, the resolution surfaces were calculated for a Type I chiral separation (ibuprofen), and a Type III chiral separation (homatropine). In Type I separations resolution can be obtained only over a narrow pH range in the vicinity of the pKa value, and above a minimum value, the concentration of β-cyclodextrin plays a lesser role. In Type III separations, the pH- and β-cyclodextrin concentration-dependent resolution surface has two lobes, on which the migration order of the enantiomers is opposite. This can be an advantage in trace component analysis. In both Type I and Type III separations, peak resolution varies strongly with the dimensionless electroosmotic flow coefficient when its value is changed in the − 1 to 1 range. The loci of the pH-dependent and the β-cyclodextrin concentration-dependent resolution maxima do not shift significantly when the dimensionless electroosmotic flow coefficient is changed. This fact provides the analyst with an additional resolution enhancement tool that does not alter the selectivity of the separation. The utility of the model and its theoretical predictions has been demonstrated by comparing measured and calculated Rs values for ibuprofen and homatropine.  相似文献   

11.
The enantiomeric separation of gemfibrozil chiral analogues was performed by capillary zone electrophoresis (CZE). Resolution of the enantiomers was achieved using heptakis(2,3,6-tri-O-methyl)-beta-cyclodextrin (TM-beta-CD) as chiral selector dissolved into a buffer solution. In order to optimize the separation conditions, type, pH and concentration of running buffer and chiral selector concentration were varied. For each pH value, the optimum chiral selector concentration that produced the resolution of the isomers was found. The migration order of labile diastereoisomers formed was valued at the optimum experimental conditions by adding a pure optical isomer to the racemic mixture. Data from 1H NMR studies confirmed host-guest interaction between TM-beta-CD and 5-(2,5-dimethylphenoxy)-2-ethylpentanoic acid sodium salt. The hypothesized stoichiometry host:guest was 1:1. An apparent equilibrium constant (Ka) was estimated monitoring the chemical shift variation as a function of TM-beta-CD concentration. Salt effect on complexation equilibrium constant was also investigated.  相似文献   

12.
A novel cationic cyclodextrin, mono-6A-(2-hydroxyethyl-1-ammonium)-6A-β-cyclodextrin chloride (HEtAMCD) has been successfully synthesized and applied as chiral selector in capillary electrophoresis. The NMR study revealed this chiral selector has three recognition sites: β-CD, ammonium cation and hydroxy group in the sidearm to contribute three corresponding driving forces including inclusion complexation, electrostatic interaction and hydrogen bonding. The effect of buffer pH and HEtAMCD concentration (2.5–10 mM) on enantioselectivity, chiral resolution as well as effective mobility of analytes was investigated. This elegantly designed CD exhibits outstanding enantioselectivities toward the studied hydroxyl acids and ampholytic racemates in CE with the aid of extra hydrogen bonding. Under optimum pH 6.0, chiral resolutions over 5 can be readily obtained for hydroxy acids with CD concentration below 5 mM. The comparison study between HEtAMCD and our earlier reported ammonium CDs indicates the hydroxyethylammonium group of HEtAMCD significantly increased the enantioselective capability.  相似文献   

13.
Summary The chiral separation of two newly synthesized arylpropionic acids of pharmaceutical interest, namely 2-[(5′-benzoil-2′-hydroxy)phenyl]-propionic acid (DF-1738y) and 2-[(4′-benzoiloxy-2′-hydroxy)phenyl]-propionic acid (DF-1770y), was performed by Capillary Zone Electrophoresis (CZE) using either cyclodextrins or antibiotics as chiral selectors in coated capillary. In order to optimize the separation, the effect on the migration time and resolution of type and concentration of the chiral selector, the buffer pH and the capillary temperature were studied. Several cyclodextrins, namely the charged 6A-monomethylamino-β-cyclodextrin (MeNH-β-CD) and the neutral methyl-β-cyclodextrins (M-β-CD) and heptakis-2,3,6-tri-O-methyl-β-cyclodextrin (TM-β-CD), were tested for the enantiomeric separation of aryl propionic acids (APAs) compounds. Of these TM-β-CD provided the highest enantiomeric resolution at pH 5, however only DF-1738y optical isomers were baseline resolved. Using background electrolytes (BGEs) at higher pHs (pH=6–7) supported with the above listed CDs, an enantioresolution increase was recognized only for compound DF-1738y. In contrast DF-1770y exhibited the highest resolution at the lowest pH value studied (pH 4). The macrocyclic antibiotic vancomycin was therefore added to the BGE and tested as chiral selector using the partial filling counter current mode in order to obtain a sensitive analysis, high resolution and reduced antibiotic adsorption on the capillary wall. 5 mM vancomycin dissolved in the BGE at pH 5 and 25°C provided relatively high enantiomeric resolution (R DF-1738y=3.4,R DF-1770y=2.22) of both compounds.  相似文献   

14.
A novel positively charged single-isomer of β-cyclodextrin, mono-6-deoxy-6-(3R,4R-dihydroxypyrrolidine)-β-CD chloride (dhypy-CDCl), was synthesized and employed as a chiral selector for the first time in capillary electrophoresis (CE) for the enantioseparation of anionic and ampholytic acids. The effects of the running buffer pH, chiral selector concentration, analyte structure and organic modifier on the enantioseparation were studied in detail. The chiral selectivity and resolution for most of the studied analytes decreased as the buffer pH increased in the range of 6.0–9.0. Increasing selector concentration led to decreased effective mobility, increased chiral selectivity and resolution for most of the studied analytes. Moreover, the hydroxyl groups located on the dihydroxypyrrolidine substituent of the dhypy-CDCl could have influence on the chiral separation.  相似文献   

15.
采用高效毛细管区带电泳法,以β-环糊精及其衍生物作为手性选择剂,对外消旋N-(2-甲基-6-乙基苯基)丙氨酸(EMPA)的两个对映体进行了手性分离,比较了环糊精种类、环糊精浓度、电解质溶液pH值、温度和电场强度对分离的影响.实验结果表明,采用2,6-O-二甲基-β-环糊精为手性选择试剂,环糊精浓度为40mmol/L、电解质溶液pH=5.5及温度为20℃时分离效果最佳,对映体基本达基线分离,线性范围为20~200mg/L,最低检测限为10mg/L.  相似文献   

16.
Summary Capillary zone electrophoresis using cyclodextrins and a chiral crown ether as buffer constituents was studied for the enantiomeric separation of drugs and amino acids. Based on results obtained from separation of racemic -amino acids both chiral selectors are compared with respect to resolution, efficiency and retention time. For (±)-Quinagolide effects of buffer composition and temperature are examined using -cyclodextrin as chiral agent. Optimum conditions were pH 2.5 at 30 mmol L–1 -cyclodextrin. A linear dependence of retention on -cyclodextrin concentration allowed calculation of formation constants of the host-guest complexes. Buffer concentration and temperature also influence resolution. The application of a chiral crown ether to the separation of optical isomers in capillary zone electrophoresis is described for the first time. Chiral recognition of solutes depends on the formation of protonated alkyl amines and separation is attributed to the formation of diastereomeric host-guest complexes with different interactions for each enantiomer. The effects of crown ether concentration on resolution are presented.  相似文献   

17.
The chiral separation of dansyl-amino acids has been performed by capillary zone electrophoresis using ¶β-cyclodextrin as a chiral selector, urea as an additive and 2-propanol and methanol as organic modifiers. The enantiomeric separations of dansyl-amino acids were investigated in aqueous medium and compared with the separation in mixed aqueous-organic medium as background electrolytes. The separation conditions, (concentration of buffer, β-cyclodextrin, methanol, urea and the pH value of buffer) were optimized. In the absence of organic modifier, only five pairs of 8 separated dansyl-amino acids were resolved when run separately. A mixture of up to eight chiral amino acids can be baseline resolved in less than 19 min by β-cyclodextrin-modified capillary zone electrophoresis with a buffer of 60 mmol L–1 H3BO3-KCl/40 mmol L–1 NaOH (pH 9.0), 4 mol L–1 urea, 100 mmol L–1β-cyclodextrin and 10% (v/v) methanol.  相似文献   

18.
Summary Cyclodextrin-mediated, capillary zone electrophoresis was used for the chiral separation of chloroquine and pemoline. Optimization experiments for the choice of cyclodextrins and the concentration of sulfobutyl ether β-cyclodextrin were performed. Complete separations were obtained with a resolution of 2.1 for chloroquine in 2.5 mM sulfobutyl ether β-cyclodextrin and a resolution of 1.4 for pemoline in 1.0 mM sulfobutyl ether β-cyclodextrin, respectively, from which further biomedical research, such as pharmacodynamic or pharmacokinetic study and quantitative determination, could subsequently be facilitated.  相似文献   

19.
许旭  张梅  吴如金  林炳承 《色谱》1998,16(5):379-382
 用β-环糊精(β-CD)和去氧胆酸钠(SDC)的环糊精改性毛细管胶束电动色谱,实际拆分了EMD-56431和扑尔敏两种手性药物,研究了SDC和β-CD浓度及pH值对分离的影响。初步讨论了分离的机理。认为CD-SDC体系中胶束单体分子几乎均被CD包合;CD可能与部分胶束单体包合而存在于SDC的胶束中;该拆分体系中SDC与β-CD的浓度比在4∶1~4∶3时拆分效果最好。并发现SDC对β-CD有显著的增溶作用。  相似文献   

20.
Tong S  Yan J  Guan YX  Lu Y 《Journal of chromatography. A》2011,1218(33):5602-5608
High speed counter-current chromatography (HSCCC) was successfully applied to resolution of phenylsuccinic acid (PSA) with hydroxypropyl-β-cyclodextrin (HP-β-CD) as chiral selector (CS). The two-phase solvent system composed of n-hexane–methyl tert-butyl ether–0.1 mol L−1 phosphate buffer solution with pH = 2.51 (0.5:1.5:2, v/v/v) was selected. Influence factors involved in the chiral separation were investigated, including the concentration of chiral selector, pH value of the aqueous phase, the separation temperature, and the thermodynamic parameters of inclusion complex were calculated. The complex formation constants were determined using analytical instrument. Two HSCCC elution modes were studied and peak resolution equation was discussed. Under optimum separation conditions, 712 mg of PSA racemate was separated using preparative apparatus. The purities of both of the fractions including (+)-PSA and (−)-PSA from the preparative CCC separation were over 98.5% determined by HPLC and enantiomeric excess of (+)-PSA and (−)-PSA reached 97.6% and 98.6%, respectively. Recovery for the target compounds from the CCC fractions reached 80–82% yielding 285 mg of (+)-PSA and 292 mg of (−)-PSA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号