首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The objective of this study was to evaluate the performance of a photocatalysis/H2O2/metal membrane hybrid system in the degradation of humic acid. A metal membrane of nominal pore size 0.5 μm was used in the experiment for separation of TiO2 particles. Hydrogen peroxide was tested as an oxidant. The efficiency of removal of CODCr and color increased rapidly for initial hydrogen peroxide concentrations up to 50 mg L−1. The efficiency of removal of CODCr and color by 50 mg L−1 initial hydrogen peroxide concentration was approximately 95 and 98%, respectively. However, addition of hydrogen peroxide over 50 mg L−1 inhibited the efficiency of the system. Addition of hydrogen peroxide to a UV/TiO2 system enhanced efficiency of removal of CODCr and color compared with no addition of hydrogen peroxide. This may be ascribed to capture electrons ejected from TiO2 and to the production of OH radicals. Application of the metal membrane in the UV/TiO2/H2O2 system enhanced the efficiency of removal of CODCr and color because of adsorption by the metal membrane surface and the production of OH radicals. By application of a metal membrane with a nominal pore size of 0.5 μm, TiO2 particles were effectively separated from the treated water by metal membrane rejection. The photocatalytic metal membrane had much less resistance than the humic acid, TiO2, and humic acid/TiO2 because of the degradation of humic acid by the photocatalytic reaction.  相似文献   

2.
Currently, there is an increasing demand for the production of biodiesel and, consequently, there will be an increasing need to treat wastewaters resulting from the production process of this biofuel. The main objective of this work was, therefore, to investigate the effect of applied volumetric organic load (AVOL) on the efficiency, stability, and methane production of an anaerobic sequencing batch biofilm reactor applied to the treatment of effluent from biodiesel production. As inert support, polyurethane foam cubes were used in the reactor and mixing was accomplished by recirculating the liquid phase. Increase in AVOL resulted in a drop in organic matter removal efficiency and increase in total volatile acids in the effluent. AVOLs of 1.5, 3.0, 4.5 and 6.0 g COD L−1 day−1 resulted in removal efficiencies of 92%, 81%, 67%, and 50%, for effluent filtered samples, and 91%, 80%, 63%, and 47%, for non-filtered samples, respectively, whereas total volatile acids concentrations in the effluent amounted to 42, 145, 386 and 729 mg HAc L−1, respectively. Moreover, on increasing AVOL from 1.5 to 4.5 g COD L−1 day−1 methane production increased from 29.5 to 55.5 N mL CH4 g COD−1. However, this production dropped to 36.0 N mL CH4 g COD−1 when AVOL was increased to 6.0 g COD L−1 day−1, likely due to the higher concentration of volatile acids in the reactor. Despite the higher concentration of volatile acids at the highest AVOL, alkalinity supplementation to the influent, in the form of sodium bicarbonate, at a ratio of 0.5–1.3 g NaHCO3 g CODfed−1, was sufficient to maintain the pH near neutral and guarantee process stability during reactor operation.  相似文献   

3.
There is a lack of fundamental knowledge about the scale up of biosurfactant production. In order to develop suitable technology of commercialization, carrying out tests in shake flasks and bioreactors was essential. A reactor with integrated foam collector was designed for biosurfactant production using Bacillus subtilis isolated from agricultural soil. The yield of biosurfactant on biomass (Y p/x), biosurfactant on sucrose (Y p/s), and the volumetric production rate (Y) for shake flask were obtained about 0.45 g g−1, 0.18 g g−1, and 0.03 g l−1 h−1, respectively. The best condition for bioreactor was 300 rpm and 1.5 vvm, giving Y x/s, Y p/x, Y p/s, and Y of 0.42 g g−1, 0.595 g g−1, 0.25 g g−1, and 0.057 g l−1 h−1, respectively. The biosurfactant maximum production, 2.5 g l−1, was reached in 44 h of growth, which was 28% better than the shake flask. The obtained volumetric oxygen transfer coefficient (K L a) values at optimum conditions in the shake flask and the bioreactor were found to be around 0.01 and 0.0117 s−1, respectively. Comparison of K L a values at optimum conditions shows that biosurfactant production scaling up from shake flask to bioreactor can be done with K L a as scale up criterion very accurately. Nearly 8% of original oil in place was recovered using this biosurfactant after water flooding in the sand pack.  相似文献   

4.
UV/H2O2/micro-aeration is a newly developed process based on UV/H2O2. Halogenated pesticide 2,4-dichlorophenoxyacetic acid (2,4-D) photochemical degradation in aqueous solution was studied under various solution conditions. The UV intensity, initial 2,4-D concentrations and solution temperature varied from 183.6 to 1048.7 μW·cm−2, from 59.2 to 300.0 μg·L−1 and from 15 to 30°C, respectively. The concentration of hydrogen peroxide (H2O2) and pH ranged from 0 to 50 mg·L−1 and 5 to 9, and different water quality solutions (tap water, distilled water and deionized water) were examined in this study. With initial concentration of about 100 μg·L−1, more than 95.6% of 2,4-D can be removed in 90 min at intensity of UV radiation of 843.9 μW·cm−2, H2O2 dosage of 20 mg·L−1, pH 7 and room temperature. The removal efficiency of 2,4-D by UV/H2O2/micro-aeration process is better than UV/H2O2 process. The photodecomposition of 2,4-D in aqueous solution follows pseudo-first-order kinetics. 2,4-D is greatly affected by UV irradation intensity, H2O2 dosage, initial 2,4-D concentration and water quality solutions, but it appears to be slightly influenced by pH and temperature. There is a linear relationship between rate constant k and UV intensity and initial H2O2 concentration, which indicates that higher removal capacity can be achieved by the improvement of these factors. Finally, a preliminary cost analysis reveals that UV/H2O2/micro-aeration process is more cost-effective than the UV/H2O2 process in the removal of 2,4-D from drinking water.  相似文献   

5.
Direct determination of uranium in the concentration range of 8 μg L−1 to mg L−1 in water samples originating from different geochemical environments has been done using Inductively Coupled Plasma-Optical Emission Spectroscopy (ICP-OES). Uranium detection with 2–3% RSD (relative standard deviation) has been achieved in water samples by optimizing the plasma power, argon and sheath gas flow. These parameters were optimized for three different emission lines of uranium at 385.958, 409.014 and 424.167 nm. Interference arising due to the variation in concentration of bicarbonate, sodium chloride, calcium chloride, Fe and dissolved organic carbon (DOC) on the determination of uranium in water samples was also cheeked as these are the elements which vary as per the prevailing geochemical environment in groundwater samples. The concentration of NaHCO3, CaCl2 and NaCl in water was varied in the range 0.5–2.0%; whereas Fe ranged between 1 and 10 μg mL−1 and DOC between 0.1–1%. No marked interference in quantitative determination of uranium was observed due to elevated level of NaHCO3, CaCl2 and NaCl and Fe and DOC in groundwater samples. Concentration of uranium was also determined by other techniques like adsorptive striping voltametry (AdSv); laser fluorimetry and alpha spectrometry. Results indicate distinct advantage for uranium determination by ICP-OES compare to other techniques.  相似文献   

6.
The protonation and deprotonation of the Nb2O5 surface has been followed in order to understand the reactions of surface of this catalyst. The simultaneous potentiometric and conductometric titrations had been carried by using 50 mL of water suspension of Nb2O5 40 g L−1. The oxide was entirely deprotonated when adding 0.4 mL NaOH 1 mol L−1, and later titrated with 0.1 mol L−1. The titration had supplied K 1 and K 2 and the obtained values were 3.24 × 10−3 and 4.17 × 10−8, respectively. The zero point charge was pHpcz = 4.94. The thermodynamic studies were carried out by using 50 mL of a 40 g/L Nb2O5 aqueous suspension with the pH adjusted to pHPZC value. The suspension was titrated with 0.5 mol/L of HNO3 or NaOH for protonation or deprotonation studies, respectively, in an isoperibol calorimeter CSC ISC-4300. Thus, the obtained thermodynamic values of the protonation and deprotonation of Nb2O5 were Δdp G = −37.60 kJ/mol, Δdp H = −23.72 kJ/mol and ΔdpS = 47 J/(mol K).  相似文献   

7.
The effect of substrate (glucose) concentration on the stability and yield of a continuous fermentative process that produces hydrogen was studied. Four anaerobic fluidized bed reactors (AFBRs) were operated with a hydraulic retention time (HRT) from 1 to 8 h and an influent glucose concentration from 2 to 25 g L−1. The reactors were inoculated with thermally pre-treated anaerobic sludge and operated at a temperature of 30 °C with an influent pH around 5.5 and an effluent pH of about 3.5. The AFBRs with a HRT of 2 h and a feed strength of 2, 4, and 10 g L−1 showed satisfactory H2 production performance, but the reactor fed with 25 g L−1 of glucose did not. The highest hydrogen yield value was obtained in the reactor with a glucose concentration of 2 g L−1 when it was operated at a HRT of 2 h. The maximum hydrogen production rate value was achieved in the reactor with a HRT of 1 h and a feed strength of 10 g L−1. The AFBRs operated with glucose concentrations of 2 and 4 g L−1 produced greater amounts of acetic and butyric acids, while AFBRs with higher glucose concentrations produced a greater amount of solvents.  相似文献   

8.
This work describes the development and optimization of a sequential injection method to automate the determination of paraquat by square-wave voltammetry employing a hanging mercury drop electrode. Automation by sequential injection enhanced the sampling throughput, improving the sensitivity and precision of the measurements as a consequence of the highly reproducible and efficient conditions of mass transport of the analyte toward the electrode surface. For instance, 212 analyses can be made per hour if the sample/standard solution is prepared off-line and the sequential injection system is used just to inject the solution towards the flow cell. In-line sample conditioning reduces the sampling frequency to 44 h−1. Experiments were performed in 0.10 M NaCl, which was the carrier solution, using a frequency of 200 Hz, a pulse height of 25 mV, a potential step of 2 mV, and a flow rate of 100 μL s−1. For a concentration range between 0.010 and 0.25 mg L−1, the current (i p, μA) read at the potential corresponding to the peak maximum fitted the following linear equation with the paraquat concentration (mg L−1): i p = (−20.5 ± 0.3)C paraquat − (0.02 ± 0.03). The limits of detection and quantification were 2.0 and 7.0 μg L−1, respectively. The accuracy of the method was evaluated by recovery studies using spiked water samples that were also analyzed by molecular absorption spectrophotometry after reduction of paraquat with sodium dithionite in an alkaline medium. No evidence of statistically significant differences between the two methods was observed at the 95% confidence level.  相似文献   

9.
To screen strains of halotolerant or halophile bacteria which are able to convert isoeugenol to vanillin, 36 different strains of bacteria isolated from the salty environments in Iran were investigated. During growth on isoeugenol, a moderately halotolerant Gram-negative coccobacil showed capability of converting isoeugenol to vanillin. Based on morphological, physiological, and phylogenetic studies, strain CSW4 was classified as a bacterium belonging to the genus Psychrobacter. The bioconversion products were confirmed by thin-layer chromatography, high-performance liquid chromatography, and spectral data obtained from UV/Vis spectroscopy, FTIR, and mass-spectroscopy. Using growing cells, vanillin reached its maximum level of 88.18 mg L−1 after 24 h of reaction time in the presence of 1 g L−1 isoeugenol, resulting in a molar yield of 10.2%. The use of resting cells led to the optimal yield of vanillin (16.4%) which was obtained after 18-h reaction using 1 g L−1 isoeugenol and 3.1 g of dry weight of cells per liter harvested at the end of the exponential growth phase. To improve vanillin yield, the effect of substrate concentration on vanillin production under resting cells conditions was also investigated. Using 10 g L−1 isoeugenol, the maximal vanillin concentration (1.28 g L−1) was achieved after a 48-h reaction, without further optimization. The present study brings the first evidence for biotransformation of isoeugenol to vanillin in the genus Psychrobacter.  相似文献   

10.
Electrochromism is defined as the persistent but reversible optical change (usually transmission) produced electrochemically. The preparation by the sol-gel process of thin films made of amorphous or crystalline nanoparticles of WO3, V2O5, Nb2O5, TiO2, CeO2, Fe2O3 and mixed compounds such as WO3−TiO2, CeO2−TiO2, CeO2−SnO2, have opened remarkable new opportunities for obtaining electrochromic layers exhibiting large optical transmission variation in the UV, visible or infrared range and acceptable kinetics under H+ or Li+ insertion. In this paper we give an overview of what has been recently achieved in this field, with emphasis for cathodic electrochromic coatings of Nb2O5 and TiO2 composition. Finally we stress the future developments in this fast growing field.  相似文献   

11.
Nitrate ions were used as the oxidant in the cathode chamber of a microbial fuel cell (MFC) to generate electricity from organic compounds with simultaneous nitrate removal. The MFC using nitrate as oxidant could generate a voltage of 111 mV (1,000 Ω) with a plain carbon cathode. The maximum power density achieved was 7.2 mW m−2 with a 470 Ω resistor. Nitrate was reduced from an initial concentration of 49 to 25 mg (NO3−N) L−1 during 42-day operation. The daily removal rate was 0.57 mg (NO3–N) L−1 day−1 with a voltage generation of 96 mV. In the presence of Pt catalyst dispersed on cathode, the cell voltage was significantly increased up to 450 mV and the power density was 117.7 mW m−2, which was 16 times higher than the value without Pt catalyst. Significant nitrate removal was also observed with a daily removal rate of 2 mg (NO3–N) L−1 day−1, which was 3.5 times higher compared with the operation without catalyst. Nitrate was reduced to nitrite and ammonia in the liquid phase at a ratio of 0.6% and 51.8% of the total nitrate amount. These results suggest that nitrate can be successfully used as an oxidant for power generation without aeration and also nitrate removal from water in MFC. However, control of the process would be needed to reduce nitrate to only nitrogen gas, and avoid further reduction to ammonia.  相似文献   

12.
The reaction between Fe(III) and dopamine in aqueous solution in the presence of Na2S2O3 was followed through UV–Vis spectroscopy, pH and oxy-reduction potential (Eh) measurements. The formation and quick disappearing of the complex [Fe(III)HL1−]2+, HL1− = monoprotonated dopamine was observed with or without S2O3 2− at pH 3. An unexpected reaction occurs in presence of thiosulfate forming the stable anion complex [Fe(III)(L2−)2]1−, L2− = dopacatecholate (λ = 580 nm) and the auto-increasing of the pH, from 3 to 7. It was proposed that H+ and molecular oxygen are consumed by free radical thiosulfate formed during the reaction.  相似文献   

13.
The aim of the present investigation was to develop a biosensor based on a quartz crystal nanobalance (QCN) for the detection of histidine (His). A thin layer of nickel was electrochemically deposited over the gold crystal electrode and exposed to H2O2 to form nickel oxide. The composite electrode was then used to determine His. The frequency shifts were linear with respect to the concentration of His in solution. His can be measured in the range of 100–2000 mg L−1. A lower limit of detection of 48 mg L−1 and a sensitivity factor of 0.0307 Hz/mg L−1 was obtained. Some possible interferences were checked for, and the performance of the sensor was found to be unaffected by any interference except for those from arginine, cysteine and NaH2PO4. Principal component analysis (PCA) was used to process the frequency response data of the single piezoelectric crystal at various times, considering the different adsorption–desorption dynamics of His and the interfering compounds. Over 85% of the variance in the data was explained by two principal components. A score plot of the data for the first two PCs showed that the modified QCN yields favorable identification and quantification performances for His and the interfering compounds.  相似文献   

14.
A chemiluminescence (CL) micro-flow system is presented for rapid determination of chemical oxygen demand (COD) in water at room temperature. In this system, potassium dichromate is reduced to Cr3+ in 2 mol L−1 H2SO4 during the chemical oxidation of COD substances in the sample, and Cr3+ can be measured with the help of the luminol-H2O2 CL system. The polymethyl methacrylate micro-flow chip with discrete microdroplet sampling was used here. Effects on COD determination (such as pH, concentrations, the channel length, and interference) were investigated. The linear range for COD determination was 0.27–10 g L−1, and the detection limit was 100 mg L−1. The method was successfully applied to the determination of COD in wastewater samples. The data obtained with the present method were in fairly good agreement with those obtained by the titrimetric method. Correspondence: Zhujun Zhang, Key Laboratory of Analytical Chemistry for Life Science of Shaanxi Province, School of Chemistry and Materials Science, Shaanxi Normal University, Xi’an 710062, P.R. China; Department of Chemistry, Institute of Analytical Science, Southwest University, Beibei, Chongqing 400715, P.R. China  相似文献   

15.
The adsorption process of 3-chloro phenol from aqueous solution on a activated carbon prepared from African palm stone and which presents a specific surface area of 685 m2 g−1, a greater quantity of total acid groups and a pHPZC of 6.8 is studied. The adsorption isotherms are determined at pH values of 3, 5, 7, 9 and 11. The adsorption isotherms are fitted to the Langmuir model and the values of the maximum quantity adsorbed that are between 96.2 and 46.4 mg g−1 are obtained along with the constant KL with values between 0.422 and 0.965 L mg−1. The maximum quantity adsorbed diminishes with the pH and the maximum value for this is a pH of 5. The immersion enthalpies of the activated carbon in a 3-chloro phenol solution of constant concentration, of 100 mg L−1, are determined for the different pH levels, with results between 37.6 and 21.2 J g−1. Immersion enthalpies of the activated carbon in function of 3-chloro phenol solution concentration are determined to pH 5, of maximum adsorption, with values between 28.3 and 38.4 J g−1, and by means of linearization, the maximum immersion enthalpy is calculated, with a value of 41.67 J g−1. With the results of the immersion enthalpy, maximum quantity adsorbed and the constant KL, establish relations that describe the adsorption process of 3-chloro phenol from aqueous solution on activated carbon.  相似文献   

16.
The precipitation polymerizations of N-tert-butylacrylamide (NtBAM) in water are demonstrated; for example, the polymerization with potassium peroxodisulfate using a 15 g L−1 (118 mmol L−1) concentration of NtBAM in the feed ([NtBAM]0) was performed at 70 °C for 12 h, quantitatively producing poly(N-tert-butylacrylamide) particles with a number-average diameter (d n) of 203 nm and a coefficient of variation (C v) of 4.7%. The particle sizes were controlled in the d ns range between 75 and 494 nm by changing the monomer feeds or adding an electrolyte such as NaCl. The solid contents in the resulting aqueous latex solutions ranged from 0.1 to 1.5%, whereas it increased to 4.8% by applying a “shot-growth” technique. The polymerization in water under a somewhat unique condition is described, which was started from a heterogeneous system due to the presence of significantly large amounts of monomers ([NtBAM]0 = 50 g L−1). This also provided monodisperse latexes with the d n of 370 nm in 96% yield, in which the solid content reached 4.9%.  相似文献   

17.
A magnetic molecularly imprinted polymer (M-MIP) of bisphenol A (BPA) was prepared by miniemulsion polymerization. The morphological and magnetic characteristics of the M-MIP were characterized by Fourier-transform infrared spectroscopy, transmission electron microscopy, and vibrating sample magnetometry. The adsorption capacities of the M-MIP and the nonimprinted polymer were investigated using static adsorption tests, and were found to be 390 and 270 mg g−1, respectively. Competitive recognition studies of the M-MIP were performed with BPA and the structurally similar compound DES, and the M-MIP displayed high selectivity for BPA. A method based on molecularly imprinted solid-phase extraction assisted by magnetic separation was developed to extract BPA from environmental water and milk samples. Various parameters such as the mass of sorbent, the pH of the sample, the extraction time, and desorption conditions were optimized. Under selected conditions, extraction was completed in 15 min. High-performance liquid chromatography with UV detection was employed to determine BPA after the extraction. For water samples, the developed method exhibited a limit of detection (LOD) of 14 ng L−1, a relative standard deviation of 2.7% (intraday), and spiked recoveries ranging from 89% to 106%. For milk samples, the LOD was 0.16 μg L−1, recoveries ranged from 95% to 101%, and BPA was found in four samples at levels of 0.45–0.94 μg L−1. The proposed method not only provides a rapid and reliable analysis but it also overcomes problems with conventional solid-phase extraction (SPE), such as the packing of the SPE column and the time-consuming nature of the process of loading large-volume samples.  相似文献   

18.
Sensitive fluorescent probes for the determination of hydrogen peroxide and glucose were developed by immobilizing enzyme horseradish peroxidase (HRP) on Fe3O4/SiO2 magnetic core–shell nanoparticles in the presence of glutaraldehyde. Besides its excellent catalytic activity, the immobilized enzyme could be easily and completely recovered by a magnetic separation, and the recovered HRP-immobilized Fe3O4/SiO2 nanoparticles were able to be used repeatedly as catalysts without deactivation. The HRP-immobilized nanoparticles were able to activate hydrogen peroxide (H2O2), which oxidized non-fluorescent 3-(4-hydroxyphenyl)propionic acid to a fluorescent product with an emission maximum at 409 nm. Under optimized conditions, a linear calibration curve was obtained over the H2O2 concentrations ranging from 5.0 × 10−9 to 1.0 × 10−5 mol L−1, with a detection limit of 2.1 × 10−9 mol L−1. By simultaneously using glucose oxidase and HRP-immobilized Fe3O4/SiO2 nanoparticles, a sensitive and selective analytical method for the glucose detection was established. The fluorescence intensity of the product responded well linearly to glucose concentration in the range from 5.0 × 10−8 to 5.0 × 10−5 mol L−1 with a detection limit of 1.8 × 10−8 mol L−1. The proposed method was successfully applied for the determination of glucose in human serum sample.  相似文献   

19.
Thermally two-dimensional lattice graphene (GR) and biocompatibility chitosan (CS) act as a suitable support for the deposition of palladium nanoparticles (PdNPs). A novel hydrogen peroxide (H2O2) biosensor based on immobilization of hemoglobin (Hb) in thin film of CS containing GR and PdNPs was developed. The surface morphologies of a set of representative membranes were characterized by means of scanning electron microscopy and showed that the PdNPs are of a sphere shape and an average diameter of 50 nm. Under the optimal conditions, the immobilized Hb showed fast and excellent electrocatalytic activity to H2O2 with a small Michaelis–Menten constant of 16 μmol L−1, a linear range from 2.0 × 10−6 to 1.1 × 10−3 mol L−1, and a detection limit of 6.6 × 10−7 mol L−1. The biosensor also exhibited other advantages, good reproducibility, and long-term stability, and PdNPs/GR–CS nanocomposites film would be a promising material in the preparation of third generation biosensor.  相似文献   

20.
An environmentally friendly method to extract endocrine-disrupting phenols (EDPs) from seawaters was realized using nonionic surfactant mixtures and micelle-mediated extractions. The preconcentration step was achieved directly in the seawater matrix, and was followed by high-performance liquid chromatography (HPLC) with ultraviolet (UV) detection without any clean-up steps to remove the surfactant mixture prior to injection. Various nonionic surfactant mixtures were used, and polyoxyethylene-10-laurylether (POLE) with polyoxyethylene-4-laurylether (Brij 30) was found to be the best to work with. Method optimization involved maximizing the preconcentration factor using the studied mixtures. The proposed method gave extraction recoveries ranging from 83.3 to 114.4% for an EDP spiking level of 46.7 μg L−1, and from 63.4 to 112.4% for a spiking level of 4.7 μg L−1 for EDPs studied in real seawater matrices, with relative standard deviations of <12.1%. The detection limits of the method varied from 0.18 μg L−1 for bisphenol A (BPA) to 1.17 μg L−1 for 4-cumylphenol (4-CP). The method was applied to seawaters from the Canary Islands with successful results. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号