首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We have developed explicit- and implicit-solvent models for the flash nanoprecipitation process, which involves rapid coprecipitation of block copolymers and solutes by changing solvent quality. The explicit-solvent model uses the dissipative particle dynamics (DPD) method and the implicit-solvent model uses the Brownian dynamics (BD) method. Each of the two models was parameterized to match key properties of the diblock copolymer (specifically, critical micelle concentration, diffusion coefficient, polystyrene melt density, and polyethylene glycol radius of gyration) and the hydrophobic solute (aqueous solubility, diffusion coefficient, and solid density). The models were simulated in the limit of instantaneous mixing of solvent with antisolvent. Despite the significant differences in the potentials employed in the implicit- and explicit-solvent models, the polymer-stabilized nanoparticles formed in both sets of simulations are similar in size and structure; however, the dynamic evolution of the two simulations is quite different. Nanoparticles in the BD simulations have diffusion coefficients that follow Rouse behavior (D ∝ M(-1)), whereas those in the DPD simulations have diffusion coefficients that are close to the values predicted by the Stokes-Einstein relation (D ∝ R(-1)). As the nanoparticles become larger, the discrepancy between diffusion coefficients grows. As a consequence, BD simulations produce increasingly slower aggregation dynamics with respect to real time and result in an unphysical evolution of the nanoparticle size distribution. Surface area per polymer of the stable explicit-solvent nanoparticles agrees well with experimental values, whereas the implicit-solvent nanoparticles are stable when the surface area per particle is roughly two to four times larger. We conclude that implicit-solvent models may produce questionable results when simulating nonequilibrium processes in which hydrodynamics play a critical role.  相似文献   

2.
The paper provides new insights into the structure of Pt-containing diblock and triblock copolymers based on poly(ethylene oxide) (PEO) and poly(4-vinylpyridine) (P4VP), using a combination of atomic force microscopy (AFM), X-ray diffraction (XRD), transmission electron microscopy (TEM), and anomalous small-angle X-ray scattering (ASAXS). Parallel studies using methods contributing supplemental structural information allowed us to comprehensively characterize sophisticated polymer systems during metalation and to exclude possible ambiguity of the data interpretation of each of the methods. AFM and TEM make available the determination of sizes of the micelles and of the Pt-containing micelle cores, respectively, while a combination of XRD, TEM, and ASAXS reveals Pt-nanoparticle size distributions and locations along with the structural information about the polymer matrix. In addition, for the first time, ASAXS revealed the organization of Pt-nanoparticle-filled diblock and triblock copolymers in the bulk. The nanoparticle characteristics are mainly determined by the type of block copolymer system in which they are found: larger particles (2.0-3.0 nm) are formed in triblock copolymer micelles, while smaller ones (1.5-2.5 nm) are found in diblock copolymer micelles. This can be explained by facilitated intermicellar exchange in triblock copolymer systems. For both systems, Pt nanoparticles have narrow particle size distributions as a result of a strong interaction between the nanoparticle surface and the P4VP units inside the micelle cores. The pH of the medium mainly influences the particle location rather than the particle size. A structural model of Pt-nanoparticle clustering in the diblock PEO-b-P4VP and triblock P4VP-b-PEO-b-P4VP copolymers in the bulk was constructed ab initio from the ASAXS data. This model reveals that nearly spherical micellar cores of about 10 nm in diameter (filled with Pt nanoparticles) aggregate forming slightly oblate hollow bodies with an outer diameter of about 40 nm.  相似文献   

3.
The aggregation of hydrophobic nanoparticles in the presence of diblock copolymers is investigated using dynamic Monte Carlo simulation on a simple cubic lattice. One nanoparticle occupies one lattice site, one block copolymer (A(m)B(m)) occupies 2m sequentially linked sites with m segments of A and m segments of B, and solvents are represented by any unoccupied sites. All of them are self-avoiding and nearest-neighbor interactions are considered. A compact big aggregate, dispersed aggregates wrapped by polymer chains, and an ordered lamellar structure are obtained by varying the concentration of copolymer. The structures are seen to be controlled by competing forces between the interaction of copolymer with nanoparticles and the self-assembly of copolymer in solution. The critical concentration of copolymer needed to form the lamellar structure, C(p,L), decreases with the chain length. It is also found that C(p,L) decreases roughly linearly with the concentration of nanoparticles C(n), which can be approximately expressed as C(p,L)=0.764-0.857C(n) when m=2. The simulation demonstrates that addition of diblock copolymer can effectively control the aggregation of nanoparticles and lead to the formation of a variety of nanostructures.  相似文献   

4.
Reactive impingement mixing was employed to produce polymer-protected nanoparticles. Amphiphilic block copolymer was formed in situ by reactive coupling of hydrophobic and hydrophilic blocks. Simultaneously, a hydrophobic compound and the copolymer coprecipitated to form nanoparticles in the range of 100 nm. Specifically, beta-carotene was stabilized by the amphiphilic diblock copolymer, formed from the reaction of an amino-terminated hydrophilic block, poly(ethylene glycol) (PEG-NH2), with an acid chloride-terminated hydrophobic block, either poly(epsilon-caprolactone) (PCL-COCl) or polystyrene (PS-COCl). Spherical particles were observed by scanning and cryogenic transmission electron microscopy. Process conditions, including feed concentration of beta-carotene and feed concentrations of polymeric stabilizers, had little or no effect on average particle sizes over the range studied. Further, for Reynolds numbers greater than 500 the feed flow rates also had no effect. The effect of glass transition temperature (Tg) of the hydrophobic polymer on morphology and particle formation mechanism is discussed.  相似文献   

5.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

6.
Poly(methyl methacrylate) (PMMA) nanoparticles with a sensitive CO2‐responsive hydrophilic/hydrophobic surface that confers controlled dispersion and aggregation in water were prepared by emulsion polymerization at 50 °C under CO2 bubbling using amphiphilic diblock copolymers of 2‐dimethylaminoethyl methacrylate (DMAEMA) and N‐isopropyl acrylamide (NIPAAm) as an emulsifier. The amphiphilicity of the hydrophobic–hydrophilic diblock copolymer at 50 °C was triggered by CO2 bubbling in water and enabled the copolymer to serve as an emulsifier. The resulting PMMA nanoparticles were spherical, approximately 100 nm in diameter and exhibited sensitive CO2/N2‐responsive dispersion/aggregation in water. Using copolymers with a longer PNIPAAm block length as an emulsifier resulted in smaller particles. A higher concentration of copolymer emulsifier led to particles with a stickier surface. Given its simple preparation and reversible CO2‐triggered amphiphilic behavior, this newly developed block copolymer emulsifier offers a highly efficient route toward the fabrication of sensitive CO2‐stimuli responsive polymeric nanoparticle dispersions. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 2149–2156  相似文献   

7.
We present molecular dynamics simulations coupled with a dissipative particle dynamics thermostat to model and simulate the behavior of symmetric diblock copolymer/nanoparticle systems under simple shear flow. We consider two categories of nanoparticles, one with selective interactions toward one of the blocks of a model diblock copolymer and the other with nonselective interactions with both blocks. For the selective nanoparticles, we consider additional variants by changing the particle diameter and the particle-polymer interaction potential. The aim of our present study is to understand how the nanoparticles disperse in a block copolymer system under shear flow and how the presence of nanoparticles affects the rheology, structure, and flow behavior of block copolymer systems. We keep the volume fraction of nanoparticles low (0.1) to preserve lamellar morphology in the nanocomposite. Our results show that shear can have a pronounced effect on the location of nanoparticles in block copolymers and can therefore be used as another parameter to control nanocomposite self-assembly. In addition, we investigate the effect of nanoparticles on shear-induced lamellar transition from parallel to perpendicular orientation to further elucidate nanocomposite behavior under shear, which is an important tool to induce long-range order in self-assembling materials such as block copolymers.  相似文献   

8.
We perform molecular simulations to study the self-assembly of block copolymer tethered cubic nanoparticles. Minimal models of the tethered nanoscale building blocks (NBBs) are utilized to explore the structures arising from self-assembly. We demonstrate that attaching a rigid nanocube to a diblock copolymer affects the typical equilibrium morphologies exhibited by the pure copolymer. Lamellar and cylindrical phases are observed in both systems but not at the corresponding relative copolymer tether block fractions. The effect of nanoparticle geometry on phase behavior is investigated by comparing the self-assembled structures formed by the tethered NBBs with those of their linear ABC triblock copolymer counterparts. The tethered nanocubes exhibit the conventional triblock copolymer lamellar and cylindrical phases when the repulsive interactions between different blocks are symmetric. The rigid and bulky nature of the cube induces interfacial curvature in the tethered NBB phases compared to their linear ABC triblock copolymer counterparts. We compare our results with those structures obtained from ABC diblock copolymer tethered nanospheres to further elucidate the role of cubic nanoparticle geometry on self-assembly.  相似文献   

9.
We present an approach to the synthesis of biofunctionalized block copolymer nanoparticles based on ring‐opening metathesis polymerization; these nanoparticles may serve as novel scaffolds for the multivalent display of ligands. The nanoparticles are formed by the self‐assembly of diblock copolymers composed of a hydrophobic block and a hydrophilic activated block that can be functionalized with thiolated ligands in aqueous media. The activated block enables control over the orientation of the displayed ligands, which may be sugars, peptides, or proteins engineered to contain cysteine residues at suitable locations. The nanoparticle diameter can be varied over a wide range through changes in the composition of the block copolymer, and biofunctionalization of the nanoparticles has been demonstrated by the attachment of a peptide previously shown to inhibit the assembly of anthrax toxin. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 928–939, 2006  相似文献   

10.
Woodhead JL  Hall CK 《Macromolecules》2011,44(13):5443-5451
We use discontinuous molecular dynamics (DMD) computer simulation to investigate the encapsulation efficiency and micellar structure of solute-carrying block copolymer nanoparticles as a function of packing fraction, polymer volume fraction, solute mole fraction, and the interaction parameters between the hydrophobic head blocks and between the head and the solute. The encapsulation efficiency increases with increasing polymer volume fraction and packing fraction but decreases with increasing head-head interaction strength. The latter is due to an increased tendency for the solute to remain on the micelle surface. We compared two different nanoparticle assembly methods, one in which the solute and copolymer co-associate and the other in which the copolymer micelle is formed before the introduction of solute. The assembly method does not affect the encapsulation efficiency but does affect the solute uptake kinetics. Both head-solute interaction strength and head-head interaction strength affect the density profile of the micelles; increases in the former cause the solute to distribute more evenly throughout the micelle, while increases in the latter cause the solute to concentrate further from the center of the micelle. We explain our results in the context of a model of drug insertion into micelles formulated by Kumar and Prud'homme; as conditions become more conducive to micelle formation, a stronger energy barrier to solute insertion forms which in turn decreases the encapsulation efficiency of the system.  相似文献   

11.
The influence of pH value on gold nanoparticle production in the presence of Pluronic stabilizers is systematically investigated. The reactions are studied as a function of pH and at fixed concentrations of the two reactants, HAuCl(4) and P123 block copolymer. Results indicate that the reaction pathway during the nanoparticle formation can be controlled by varying pH. The nanoparticles synthesized at pH=11.12 have an average diameter of 9.6 nm with a narrow size distribution, and the Pluronics are adsorbed on individual gold particle surfaces to form core-shell structures via hydrophobic interactions. The present work provides an economic way to improve the dispersion and stabilization of gold nanoparticles and throws further light on the understanding of gold nanoparticle production using block copolymers.  相似文献   

12.
Morphology control is important for practical applications of composite materials that consist of functional polymers and nanoparticles. Toward that end, block copolymers provide useful templates to arrange nanoparticles in the scaffold of self-organized polymer microdomains. This paper reports theoretical predictions for the distribution of nanoparticles in the lamellar structures of symmetric diblock copolymers on the basis of a polymer density functional theory (DFT) and the potential distribution theorem (PDT). The DFT predicts periodic spacing of lamellar structures in good agreement with molecular dynamics simulations. With the polymer structure from DFT as the input, the PDT is used to examine the effects of particle size, surface energy, polymer chain length, and compressibility on the distribution of nanoparticles in the limit of low particle density. It is found that the nanoparticle distribution depends not only on the particle size and surface energy but also on the local structure of the microdomain interface, polymer chain length, and compressibility. The theoretical predictions are compared well with experiments and simulations.  相似文献   

13.
Using the self-consistent field theory (SCFT), we investigate the phase behavior of a mixture of diblock copolymers and nanoparticles with monodisperse polymer chains tethered to their surfaces. We assume the size of the nanoparticles to be much smaller than that of the attached polymer chains and therefore model the particles with their grafted polymer "shell" as star polymers. The polymer chains attached to the particles are of the same species as one of the blocks of the symmetric diblock copolymer. Of primary interest is how to tune the shell of the particle by changing both the length and number of tethered polymers in order to achieve higher loading of nanoparticles within an ordered structure without macrophase separation occurring. We find that the phase behavior of the system is very sensitive to the size of the particle including its tethered shell. The region of microphase separation is increased upon decreasing the star polymer size, which may be achieved by shortening and/or removing tethered polymer chains. To explore the possible structures in these systems we employ SCFT simulations that provide insight into the arrangement of the different species in these complex composites.  相似文献   

14.
Size-exclusion polymer electrolytes are promising charge carriers to diminish the crossover and allowing commercially available low-cost porous membranes in redox flow batteries. Boosting the solubility in water and maximizing the number of redox sites to enhance the capacity of these polymeric systems is challenging. New highly water dispersed amphiphilic diblock copolymers are reported here, with an average concentration value of 1.7 10?3 mmol of Ferrocene (Fc)-linked moieties per mg of polymer, determined by total X-ray reflection fluorescence. These redox amphiphilic block copolymers are stabilized in water as spherical nanoparticles (20 nm) by using a simple phase solvent inversion procedure. We evidence a maximum polymer dispersibility value of 6 g/L in water, for long-term stable polymer nanoparticle suspensions, yielding a theoretical capacity value of 4.78 mAh at 10.5 mM Fc. Further adjustment of the ionic conductivity and pH of these stable redox block copolymer suspensions has rendered a conductivity value of 44.5 mS/cm at pH values close to a neutral one, by adding a variety of salt supports. Studies using a 3-electrode configuration cell reveal an efficient charge transport between each of the Fc motifs in the polymer nanoparticle. A capacity value of 3.1 mAh with no transient of the polymer nanoparticles crosswise the cheap porous membrane is evidenced when cycled as polycatholyte material in a Zn hybrid aqueous redox flow battery. The particle size and electronic changes of these novel amphiphilic redox block copolymer electrolytes during consecutive redox cycles have also been monitored by dynamic light scattering and ultraviolet-visible spectroscopy, respectively. The analysis of the results enables the understanding of the main mechanisms behind their non-fully reversible capacity. Among them, aggregation and sedimentation, along with retention inside the graphite felt electrode acting the latter as a filter. These insights will aid the design of future polymer electrolyte materials and redox flow battery components with better performance and cost.  相似文献   

15.
Cationic amphiphilic diblock copolymers of poly(n-butylacrylate)-b-poly(3-(methacryloylamino)propyl)trimethylammonium chloride) (PBA-b-PMAPTAC) with various hydrophobic and hydrophilic chain lengths were synthesized by a reversible addition-fragmentation chain transfer (RAFT) process. Their molecular characteristics such as surface activity/nonactivity were investigated by surface tension measurements and foam formation observation. Their micelle formation behavior and micelle structure were investigated by fluorescence probe technique, static and dynamic light scattering (SLS and DLS), etc., as a function of hydrophilic and hydrophobic chain lengths. The block copolymers were found to be non-surface active because the surface tension of the aqueous solutions did not change with increasing polymer concentration. Critical micelle concentration (cmc) of the polymers could be determined by fluorescence and SLS measurements, which means that these polymers form micelles in bulk solution, although they were non-surface active. Above the cmc, the large blue shift of the emission maximum of N-phenyl-1-naphthylamine (NPN) probe and the low micropolarity value of the pyrene probe in polymer solution indicate the core of the micelle is nonpolar in nature. Also, the high value of the relative intensity of the NPN probe and the fluorescence anisotropy of the 1,6-diphenyl-1,3,5-hexatriene (DPH) probe indicated that the core of the micelle is highly viscous in nature. DLS was used to measure the average hydrodynamic radii and size distribution of the copolymer micelles. The copolymer with the longest PBA block had the poorest water solubility and consequently formed micelles with larger size while having a lower cmc. The "non-surface activity" was confirmed for cationic amphiphilic diblock copolymers in addition to anionic ones studied previously, indicating the universality of non-surface activity nature.  相似文献   

16.
In this study the phase behavior of nanoparticle/diblock copolymer composites in dilute solution has been investigated by the hybrid particle-field (HPF) method. We focus on the influence of particle surface selectivity (i.e. hydrophobic and hydrophilic) on the distribution of nanoparticles in the micelles formed by the diblock copolymers. These two types of particle surface selectivity are simulated systematically. The different competition between the energy from enthalpy and the energy from entropy has been observed in the two kinds of composite systems. Our simulation results show that the particle surface selectivity is a crucial factor for determining the thermodynamic properties in the complex dilute solution, and the morphologies of micelles are controlled by the volume fraction of the nanoparticles. The change of particle distribution in various micelles enriches the composite microstructures that can be formed by nanoparticle and diblock copolymer.  相似文献   

17.
Core-shell structured dual-mesoporous silica spheres (DMSS) that possess smaller pores (2.0 nm) in the shell and larger tunable pores (12.8-18.5 nm) in the core have been successfully synthesized by utilizing an amphiphilic block copolymer (polystyrene-b-poly (acrylic acid), PS-b-PAA) and cetyl trimethyl ammonium bromide (CTAB) as cotemplates. The thickness of the shells and the larger pore size in the core could be easily tuned by changing the amounts of TEOS and the hydrophobic block (PS) length during synthesis, respectively. By encapsulating hydrophobic magnetite nanoparticles into the cores, superparamagnetic dual-mesoporous silica spheres were obtained. Drug storage and release testing results showed that the diffusing rate of the stored drug could be efficiently controlled by changing the shell thickness of DMSS.  相似文献   

18.
Pyrene-loaded biodegradable polymer nanoparticles were prepared by incorporating pyrene into the polymer nanoparticles formulated from amphiphilic diblock copolymer, methoxy poly(ethylene glycol)–poly(lactic acid) (MePEG–PLA). Their morphological structure and physical properties were characterized by nuclear magnetic resonance (NMR), dynamic light scattering, fluorescence spectroscopy, transmission electronic microscopy and zeta potential measurements. Further, MePEG–PLA nanoparticles containing pyrene as fluorescent marker were administered intranasally to rats, and the distribution of nanoparticles in the nasal mucosa and the olfactory bulb were visualized by fluorescence microscopy. NMR results confirmed that MePEG–PLA copolymer can form nanoparticles in water, and hydrophilic PEG chains were located on the surface of the nanoparticles. The particle size, zeta potential and pyrene loading efficiency of MePEG–PLA nanoparticles were dependent on the PLA block content in the copolymer. Following nasal administration, the absorption of nanoparticles across the epithelium was rapid, with fluorescence observed in the olfactory bulb at 5 min, and a higher level of fluorescence persisted in the olfactory mucosa than that in the respiratory mucosa. These results show that pyrene could serve as a useful fluorescence probe for incorporation into polymer nanoparticles to study tissue distribution and MePEG–PLA nanoparticles might have a great potential as carriers of hydrophobic drugs.  相似文献   

19.
A supramolecular AB diblock copolymer has been prepared by the sequential self-assembly of terpyridine end-functionalized polymer blocks by using Ru(III)/Ru(II) chemistry. By this synthetic strategy a hydrophobic poly(ferrocenylsilane) (PFS) was attached to a hydrophilic poly(ethylene oxide) (PEO) block to give an amphiphilic metallo-supramolecular diblock copolymer (PEO/PFS block ratio 6:1). This compound was used to form micelles in water that were characterized by a combination of dynamic and static light scattering, transmission electron microscopy, and atomic force microscopy. These complementary techniques showed that the copolymers investigated form rod-like micelles in water; the micelles have a constant diameter but are rather polydisperse in length, and light scattering measurements indicate that they are flexible. Crystallization of the PFS in these micelles was observed by differential scanning calorimetry, and is thought to be the key behind the formation of rod-like structures. The cylindrical micelles can be cleaved into smaller rods whenever the temperature of the solution is increased or they are exposed to ultrasound.  相似文献   

20.
A new type of pH‐responsive block copolymer nanoparticle has been synthesized and characterized. The amphiphilic diblock copolymer, PEG‐b‐PMYM, contains acid‐labile ortho ester side‐chains in the hydrophobic block and can self‐assemble into micelle‐like nanoparticles in water at neutral pH. Hydrolysis of the ortho ester side‐chains follows a distinct exocyclic mechanism and shows pH‐dependent kinetics, which triggers changes in nanoparticle size and morphology. The nanoparticles have been found to be non‐toxic to cells in vitro. The ability to tune the size and morphology of biocompatible block copolymer nanoparticles by controlling the pH‐sensitive side‐chain hydrolysis represents a unique approach that may be exploited to improve the efficacy of nanometer‐scale drug delivery.

  相似文献   


设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号