首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
In this paper we analyze from a unique point of view the behavior of path-following and primal-dual potential reduction methods on nonlinear conic problems. We demonstrate that most interior-point methods with efficiency estimate can be considered as different strategies of minimizing aconvex primal-dual potential function in an extended primal-dual space. Their efficiency estimate is a direct consequence of large local norm of the gradient of the potential function along a central path. It is shown that the neighborhood of this path is a region of the fastest decrease of the potential. Therefore the long-step path-following methods are, in a sense, the best potential-reduction strategies. We present three examples of such long-step strategies. We prove also an efficiency estimate for a pure primal-dual potential reduction method, which can be considered as an implementation of apenalty strategy based on a functional proximity measure. Using the convex primal dual potential, we prove efficiency estimates for Karmarkar-type and Dikin-type methods as applied to a homogeneous reformulation of the initial primal-dual problem.  相似文献   

2.
For optimization problems with computationally demanding objective functions and subgradients, inexact subgradient methods (IXS) have been introduced by using successive approximation schemes within subgradient optimization methods (Au et al., 1994). In this paper, we develop alternative solution procedures when the primal-dual information of IXS is utilized. This approach is especially useful when the projection operation onto the feasible set is difficult. We also demonstrate its applicability to stochastic linear programs.  相似文献   

3.
We consider convex optimization and variational inequality problems with a given separable structure. We propose a new decomposition method for these problems which combines the recent logarithmic-quadratic proximal theory introduced by the authors with a decomposition method given by Chen-Teboulle for convex problems with particular structure. The resulting method allows to produce for the first time provably convergent decomposition schemes based on C Lagrangians for solving convex structured problems. Under the only assumption that the primal-dual problems have nonempty solution sets, global convergence of the primal-dual sequences produced by the algorithm is established. Received: October 6, 1999 / Accepted: February 2001?Published online September 17, 2001  相似文献   

4.
In this paper we present a new approach for constructing subgradient schemes for different types of nonsmooth problems with convex structure. Our methods are primal-dual since they are always able to generate a feasible approximation to the optimum of an appropriately formulated dual problem. Besides other advantages, this useful feature provides the methods with a reliable stopping criterion. The proposed schemes differ from the classical approaches (divergent series methods, mirror descent methods) by presence of two control sequences. The first sequence is responsible for aggregating the support functions in the dual space, and the second one establishes a dynamically updated scale between the primal and dual spaces. This additional flexibility allows to guarantee a boundedness of the sequence of primal test points even in the case of unbounded feasible set (however, we always assume the uniform boundedness of subgradients). We present the variants of subgradient schemes for nonsmooth convex minimization, minimax problems, saddle point problems, variational inequalities, and stochastic optimization. In all situations our methods are proved to be optimal from the view point of worst-case black-box lower complexity bounds.  相似文献   

5.
In order for primal-dual methods to be applicable to a constrained minimization problem, it is necessary that restrictive convexity conditions are satisfied. In this paper, we consider a procedure by means of which a nonconvex problem is convexified and transformed into one which can be solved with the aid of primal-dual methods. Under this transformation, separability of the type necessary for application of decomposition algorithms is preserved. This feature extends the range of applicability of such algorithms to nonconvex problems. Relations with multiplier methods are explored with the aid of a local version of the notion of a conjugate convex function.This work was carried out at the Coordinated Science Laboratory, University of Illinois, Urbana, Illinois, and was supported by the National Science Foundation under Grant ENG 74-19332.  相似文献   

6.
We prove a new local convergence property of some primal-dual methods for solving nonlinear optimization problems. We consider a standard interior point approach, for which the complementarity conditions of the original primal-dual system are perturbed by a parameter driven to zero during the iterations. The sequence of iterates is generated by a linearization of the perturbed system and by applying the fraction to the boundary rule to maintain strict feasibility of the iterates with respect to the nonnegativity constraints. The analysis of the rate of convergence is carried out by considering an arbitrary sequence of perturbation parameters converging to zero. We first show that, once an iterate belongs to a neighbourhood of convergence of the Newton method applied to the original system, then the whole sequence of iterates converges to the solution. In addition, if the perturbation parameters converge to zero with a rate of convergence at most superlinear, then the sequence of iterates becomes asymptotically tangent to the central trajectory in a natural way. We give an example showing that this property can be false when the perturbation parameter goes to zero quadratically.   相似文献   

7.
We study primal-dual interior-point methods for linear programs. After proposing a new primaldual potential function we describe a new potential reduction algorithm. We make connections between the new potential function and primal-dual interior-point algorithms with wide neighborhoods. Then we describe an algorithm that is a slightly modified version of existing primal-dual algorithms using wide neighborhoods. Assuming the optimal solution is non-degenerate, the algorithm is 1-step Q-quadratically convergent. We also study the degenerate case and show that the neighborhoods of the central path stay large as the iterates approach the optimal solutions.Research performed while the author was a Ph.D. student at Cornell University and was supported in part by the United States Army Research Office through the Army Center of Excellence for Symbolic Methods in Algorithmic Mathematics (ACSyAM), Mathematical Sciences Institute of Cornell University, Contract DAAL03-91-C-0027 and also by NSF, AFOSR and ONR through NSF Grant DMS-8920550.  相似文献   

8.
We study subgradient methods for computing the saddle points of a convex-concave function. Our motivation comes from networking applications where dual and primal-dual subgradient methods have attracted much attention in the design of decentralized network protocols. We first present a subgradient algorithm for generating approximate saddle points and provide per-iteration convergence rate estimates on the constructed solutions. We then focus on Lagrangian duality, where we consider a convex primal optimization problem and its Lagrangian dual problem, and generate approximate primal-dual optimal solutions as approximate saddle points of the Lagrangian function. We present a variation of our subgradient method under the Slater constraint qualification and provide stronger estimates on the convergence rate of the generated primal sequences. In particular, we provide bounds on the amount of feasibility violation and on the primal objective function values at the approximate solutions. Our algorithm is particularly well-suited for problems where the subgradient of the dual function cannot be evaluated easily (equivalently, the minimum of the Lagrangian function at a dual solution cannot be computed efficiently), thus impeding the use of dual subgradient methods.  相似文献   

9.
《Operations Research Letters》2014,42(6-7):404-408
Resource allocation problems are usually solved with specialized methods exploiting their general sparsity and problem-specific algebraic structure. We show that the sparsity structure alone yields a closed-form Newton search direction for the generic primal-dual interior point method. Computational tests show that the interior point method consistently outperforms the best specialized methods when no additional algebraic structure is available.  相似文献   

10.
本文对经典对数障碍函数推广,给出了一个广义对数障碍函数.基于这个广义对数障碍函数设计了解半正定规划问题的原始-对偶内点算法.分析了该算法的复杂性,得到了一个理论迭代界,它与已有的基于经典对数障碍函数的算法的理论迭代界一致.同时,并给出了一个数值算例,阐明了函数的参数对算法运行时间的影响.  相似文献   

11.
One motivation for the standard primal-dual direction used in interior-point methods is that it can be obtained by solving a least-squares problem. In this paper, we propose a primal-dual interior-point method derived through a modified least-squares problem. The direction used is equivalent to the Newton direction for a weighted barrier function method with the weights determined by the current primal-dual iterate. We demonstrate that the Newton direction for the usual, unweighted barrier function method can be derived through a weighted modified least-squares problem. The algorithm requires a polynomial number of iterations. It enjoys quadratic convergence if the optimal vertex is nondegenerate.The research of the second author was supported in part by ONR Grants N00014-90-J-1714 and N00014-94-1-0391.  相似文献   

12.
In this paper we propose a primal-dual interior-point method for large, sparse, quadratic programming problems. The method is based on a reduction presented by Gonzalez-Lima, Wei, and Wolkowicz [14] in order to solve the linear systems arising in the primal-dual methods for linear programming. The main features of this reduction is that it is well defined at the solution set and it preserves sparsity. These properties add robustness and stability to the algorithm and very accurate solutions can be obtained. We describe the method and we consider different reductions using the same framework. We discuss the relationship of our proposals and the one used in the LOQO code. We compare and study the different approaches by performing numerical experimentation using problems from the Maros and Meszaros collection. We also include a brief discussion on the meaning and effect of ill-conditioning when solving linear systems.This work was partially supported by DID-USB (GID-001).  相似文献   

13.
Active set strategies for two-dimensional and three-dimensional, unilateral and bilateral obstacle problems are described. Emphasis is given to algorithms resulting from the augmented Lagrangian (i.e., primal-dual formulation of the discretized obstacle problems), for which convergence and rate of convergence are considered. For the bilateral case, modifications of the basic primal-dual algorithm are also introduced and analyzed. Finally, efficient computer realizations that are based on multigrid and multilevel methods are suggested and different aspects of the proposed techniques are investigated through numerical experiments.  相似文献   

14.
We present a framework for designing and analyzing primal-dual interior-point methods for convex optimization. We assume that a self-concordant barrier for the convex domain of interest and the Legendre transformation of the barrier are both available to us. We directly apply the theory and techniques of interior-point methods to the given good formulation of the problem (as is, without a conic reformulation) using the very usual primal central path concept and a less usual version of a dual path concept. We show that many of the advantages of the primal-dual interior-point techniques are available to us in this framework and therefore, they are not intrinsically tied to the conic reformulation and the logarithmic homogeneity of the underlying barrier function.Part of the research was done while the author was a Visiting Professor at the University of Waterloo.Research of this author is supported in part by a PREA from Ontario and by a NSERC Discovery Grant. Tel: (519) 888-4567 ext.5598, Fax: (519) 725-5441Mathematics Subject Classification (2000): 90C51, 90C25, 65Y20,90C28, 49D49  相似文献   

15.
In this paper, we deal with primal-dual interior point methods for solving the linear programming problem. We present a short-step and a long-step path-following primal-dual method and derive polynomial-time bounds for both methods. The iteration bounds are as usual in the existing literature, namely iterations for the short-step variant andO(nL) for the long-step variant. In the analysis of both variants, we use a new proximity measure, which is closely related to the Euclidean norm of the scaled search direction vectors. The analysis of the long-step method depends strongly on the fact that the usual search directions form a descent direction for the so-called primal-dual logarithmic barrier function.This work was supported by a research grant from Shell, by the Dutch Organization for Scientific Research (NWO) Grant 611-304-028, by the Hungarian National Research Foundation Grant OTKA-2116, and by the Swiss National Foundation for Scientific Research Grant 12-26434.89.  相似文献   

16.
In this paper, we propose a generalized penalization technique and a convex constraint minimization approach for the $p$-harmonic flow problem following the ideas in [Kang & March, IEEE T. Image Process., 16 (2007), 2251-2261]. We use fast algorithms to solve the subproblems, such as the dual projection methods, primal-dual methods and augmented Lagrangian methods. With a special penalization term, some special algorithms are presented. Numerical experiments are given to demonstrate the performance of the proposed methods. We successfully show that our algorithms are effective and efficient due to two reasons: the solver for subproblem is fast in essence and there is no need to solve the subproblem accurately (even 2 inner iterations of the subproblem are enough). It is also observed that better PSNR values are produced using the new algorithms.  相似文献   

17.
In this paper, we present neighborhood-following algorithms for linear programming. When the neighborhood is a wide neighborhood, our algorithms are wide neighborhood primal-dual interior point algorithms. If the neighborhood degenerates into the central path, our algorithms also degenerate into path-following algorithms. We prove that our algorithms maintain the O(n~(1/2)L)-iteration complexity still, while the classical wide neighborhood primal-dual interior point algorithms have only the O(nL)-iteration complexity. We also proved that the algorithms are quadratic convergence if the optimal vertex is nondegenerate. Finally, we show some computational results of our algorithms.  相似文献   

18.
We consider a linesearch globalization of the local primal-dual interior-point Newton method for nonlinear programming introduced by El-Bakry, Tapia, Tsuchiya, and Zhang. The linesearch uses a new merit function that incorporates a modification of the standard augmented Lagrangian function and a weak notion of centrality. We establish a global convergence theory and present promising numerical experimentation.  相似文献   

19.
Interior projection-like methods for monotone variational inequalities   总被引:1,自引:0,他引:1  
We propose new interior projection type methods for solving monotone variational inequalities. The methods can be viewed as a natural extension of the extragradient and hyperplane projection algorithms, and are based on using non Euclidean projection-like maps. We prove global convergence results and establish rate of convergence estimates. The projection-like maps are given by analytical formulas for standard constraints such as box, simplex, and conic type constraints, and generate interior trajectories. We then demonstrate that within an appropriate primal-dual variational inequality framework, the proposed algorithms can be applied to general convex constraints resulting in methods which at each iteration entail only explicit formulas and do not require the solution of any convex optimization problem. As a consequence, the algorithms are easy to implement, with low computational cost, and naturally lead to decomposition schemes for problems with a separable structure. This is illustrated through examples for convex programming, convex-concave saddle point problems and semidefinite programming.The work of this author was partially supported by the United States–Israel Binational Science Foundation, BSF Grant No. 2002-2010.  相似文献   

20.
In this paper we present a dynamic optimal method for adjusting the centering parameter in the wide-neighborhood primal-dual interior-point algorithms for linear programming, while the centering pararheter is generally a constant in the classical wideneighborhood primal-dual interior-point algorithms. The computational results show that the new method is more efficient.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号