首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a finite simple connected graph. A vertex v is a boundary vertex of G if there exists a vertex u such that no neighbor of v is further away from u than v. We obtain a number of properties involving different types of boundary vertices: peripheral, contour and eccentric vertices. Before showing that one of the main results in [G. Chartrand, D. Erwin, G.L. Johns, P. Zhang, Boundary vertices in graphs, Discrete Math. 263 (2003) 25-34] does not hold for one of the cases, we establish a realization theorem that not only corrects the mentioned wrong statement but also improves it.Given SV(G), its geodetic closure I[S] is the set of all vertices lying on some shortest path joining two vertices of S. We prove that the boundary vertex set ∂(G) of any graph G is geodetic, that is, I[∂(G)]=V(G). A vertex v belongs to the contour Ct(G) of G if no neighbor of v has an eccentricity greater than v. We present some sufficient conditions to guarantee the geodeticity of either the contour Ct(G) or its geodetic closure I[Ct(G)].  相似文献   

2.
Let G be a simple connected graph with the vertex set V(G). The eccentric distance sum of G is defined as ξd(G)=vV(G)ε(v)DG(v), where ε(v) is the eccentricity of the vertex v and DG(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. In this paper we characterize the extremal unicyclic graphs among n-vertex unicyclic graphs with given girth having the minimal and second minimal eccentric distance sum. In addition, we characterize the extremal trees with given diameter and minimal eccentric distance sum.  相似文献   

3.
The eccentric connectivity index \(\xi ^c(G)\) of a connected graph G is defined as \(\xi ^c(G) =\sum _{v \in V(G)}{deg(v) e(v)},\) where deg(v) is the degree of vertex v and e(v) is the eccentricity of v. The eccentric graph, \(G_e\), of a graph G has the same set of vertices as G,  with two vertices uv adjacent in \(G_e\) if and only if either u is an eccentric vertex of v or v is an eccentric vertex of u. In this paper, we obtain a formula for the eccentric connectivity index of the eccentric graph of a regular dendrimer. We also derive a formula for the eccentric connectivity index for the second iteration of eccentric graph of regular dendrimer.  相似文献   

4.
By a graph we mean a finite undirected connected graph of order p, p ? 2, with no loops or multiple edges. A finite non-decreasing sequence S: s1, s2, …, sp, p ? 2, of positive integers is an eccentric sequence if there exists a graph G with vertex set V(G) = {v1, v2, …, vp} such that for each i, 1 ? i ? p, s, is the eccentricity of v1. A set S is an eccentric set if there exists a graph G such that the eccentricity ρ(v1) is in S for every v1 ? V(G), and every element of S is the eccentricity of some vertex in G. In this note we characterize eccentric sets, and we find the minimum order among all graphs whose eccentric set is a given set, to obtain a new necessary condition for a sequence to be eccentric. We also present some properties of graphs having preassigned eccentric sequences.  相似文献   

5.
For a chordal graph G=(V,E), we study the problem of whether a new vertex uV and a given set of edges between u and vertices in V can be added to G so that the resulting graph remains chordal. We show how to resolve this efficiently, and at the same time, if the answer is no, specify a maximal subset of the proposed edges that can be added along with u, or conversely, a minimal set of extra edges that can be added in addition to the given set, so that the resulting graph is chordal. In order to do this, we give a new characterization of chordal graphs and, for each potential new edge uv, a characterization of the set of edges incident to u that also must be added to G along with uv. We propose a data structure that can compute and add each such set in O(n) time. Based on these results, we present an algorithm that computes both a minimal triangulation and a maximal chordal subgraph of an arbitrary input graph in O(nm) time, using a totally new vertex incremental approach. In contrast to previous algorithms, our process is on-line in that each new vertex is added without reconsidering any choice made at previous steps, and without requiring any knowledge of the vertices that might be added subsequently.  相似文献   

6.
The eccentric distance sum is a novel topological index that offers a vast potential for structure activity/property relationships. For a graph G, it is defined as ξd(G)=vVε(v)D(v), where ε(v) is the eccentricity of the vertex v and D(v)=uV(G)d(u,v) is the sum of all distances from the vertex v. Motivated by [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 934-944], in this paper we characterize the extremal trees and graphs with maximal eccentric distance sum. Various lower and upper bounds for the eccentric distance sum in terms of other graph invariants including the Wiener index, the degree distance, eccentric connectivity index, independence number, connectivity, matching number, chromatic number and clique number are established. In addition, we present explicit formulae for the values of eccentric distance sum for the Cartesian product, applied to some graphs of chemical interest (like nanotubes and nanotori).  相似文献   

7.
8.
A graph G=(V,E) is an integral sum graph (ISG) if there exists a labeling S(G)⊂Z such that V=S(G) and for every pair of distinct vertices u,vV, uv is an edge if and only if u+vV. A vertex in a graph is called a fork if its degree is not 2. In 1998, Chen proved that every tree whose forks are at distance at least 4 from each other is an ISG. In 2004, He et al. reduced the distance to 3. In this paper we reduce the distance further to 2, i.e. we prove that every tree whose forks are at least distance 2 apart is an ISG.  相似文献   

9.
Linda Eroh 《Discrete Mathematics》2008,308(18):4212-4220
Let G be a connected graph and SV(G). Then the Steiner distance of S, denoted by dG(S), is the smallest number of edges in a connected subgraph of G containing S. Such a subgraph is necessarily a tree called a Steiner tree for S. The Steiner interval for a set S of vertices in a graph, denoted by I(S) is the union of all vertices that belong to some Steiner tree for S. If S={u,v}, then I(S) is the interval I[u,v] between u and v. A connected graph G is 3-Steiner distance hereditary (3-SDH) if, for every connected induced subgraph H of order at least 3 and every set S of three vertices of H, dH(S)=dG(S). The eccentricity of a vertex v in a connected graph G is defined as e(v)=max{d(v,x)|xV(G)}. A vertex v in a graph G is a contour vertex if for every vertex u adjacent with v, e(u)?e(v). The closure of a set S of vertices, denoted by I[S], is defined to be the union of intervals between pairs of vertices of S taken over all pairs of vertices in S. A set of vertices of a graph G is a geodetic set if its closure is the vertex set of G. The smallest cardinality of a geodetic set of G is called the geodetic number of G and is denoted by g(G). A set S of vertices of a connected graph G is a Steiner geodetic set for G if I(S)=V(G). The smallest cardinality of a Steiner geodetic set of G is called the Steiner geodetic number of G and is denoted by sg(G). We show that the contour vertices of 3-SDH and HHD-free graphs are geodetic sets. For 3-SDH graphs we also show that g(G)?sg(G). An efficient algorithm for finding Steiner intervals in 3-SDH graphs is developed.  相似文献   

10.
《Discrete Mathematics》2002,231(1-3):211-225
The eccentricity e(v) of v is the distance to a farthest vertex from v. The diameter diam(G) is the maximum eccentricity among the vertices of G. The contraction of edge e=uv in G consists of removing e and identifying u and v as a single new vertex w, where w is adjacent to any vertex that at least one of u or v were adjacent to. The graph resulting from contracting edge e is denoted G/e. An edge e is diameter-essential if diam(G/e)<diam(G). Let c(G) denote the number of diameter-essential edges in graph G. In this paper, we study existence and extremal problems for c(G); determine bounds on c(G) in terms of diameter and order; and obtain characterizations of graphs achieving extreme values of c(G).  相似文献   

11.
A proper vertex coloring of a graph G=(V,E) is acyclic if G contains no bicolored cycle. A graph G is acyclically L-list colorable if for a given list assignment L={L(v):vV}, there exists a proper acyclic coloring ? of G such that ?(v)∈L(v) for all vV(G). If G is acyclically L-list colorable for any list assignment with |L(v)|≥k for all vV, then G is acyclically k-choosable. In this paper it is proved that every planar graph with neither 4-cycles nor chordal 6-cycles is acyclically 5-choosable. This generalizes the results of [M. Montassier, A. Raspaud, W. Wang, Acyclic 5-choosability of planar graphs without small cycles, J. Graph Theory 54 (2007) 245-260], and a corollary of [M. Montassier, P. Ochem, A. Raspaud, On the acyclic choosability of graphs, J. Graph Theory 51 (4) (2006) 281-300].  相似文献   

12.
A distance graph is a graph G(R,D) with the set of all points of the real line as vertex set and two vertices u,vR are adjacent if and only if |u-v|∈D where the distance set D is a subset of the positive real numbers. Here, the vertex linear arboricity of G(R,D) is determined when D is an interval between 1 and δ. In particular, the vertex linear arboricity of integer distance graphs G(D) is discussed, too.  相似文献   

13.
A graph chordal if it does not contain any cycle of length greater than three as an induced subgraph. A set of S of vertices of a graph G = (V,E) is independent if not two vertices in S are adjacent, and is dominating if every vertex in V?S is adjacent to some vertex in S. We present a linear algorithm to locate a minimum weight independent dominating set in a chordal graph with 0–1 vertex weights.  相似文献   

14.
We examine classes of extremal graphs for the inequality γ(G)?|V|-max{d(v)+βv(G)}, where γ(G) is the domination number of graph G, d(v) is the degree of vertex v, and βv(G) is the size of a largest matching in the subgraph of G induced by the non-neighbours of v. This inequality improves on the classical upper bound |V|-maxd(v) due to Claude Berge. We give a characterization of the bipartite graphs and of the chordal graphs that achieve equality in the inequality. The characterization implies that the extremal bipartite graphs can be recognized in polynomial time, while the corresponding problem remains NP-complete for the extremal chordal graphs.  相似文献   

15.
A topological index of a molecular graph G is a numeric quantity related to G which is invariant under symmetry properties of G. Let G be a molecular graph. The augmented eccentric connectivity index, ξ A (G) is defined as ξ A (G)=Σ uV(G) M(u)/ε(u) where M(u) denotes the product of degrees of all neighbors of vertex u and ε(u) is the largest distance between u and any other vertex v of G. In this paper the exact formulas for the augmented eccentric connectivity index of V-phenylenic nanotorus together with its extremal values are given.  相似文献   

16.
The eccentric distance sum (EDS) is a novel topological index that offers a vast potential for structure activity/property relationships. For a connected graph G, the eccentric distance sum is defined as ξd(G)=vV(G)ecG(v)DG(v), where ecG(v) is the eccentricity of a vertex v in G and DG(v) is the sum of distances of all vertices in G from v. More recently, Yu et al. [G. Yu, L. Feng, A. Ili?, On the eccentric distance sum of trees and unicyclic graphs, J. Math. Anal. Appl. 375 (2011) 99-107] proved that for an n-vertex tree T, ξd(T)?4n2−9n+5, with equality holding if and only if T is the n-vertex star Sn, and for an n-vertex unicyclic graph G, ξd(G)?4n2−9n+1, with equality holding if and only if G is the graph obtained by adding an edge between two pendent vertices of n-vertex star. In this note, we give a short and unified proof of the above two results.  相似文献   

17.
Let G be a connected (di)graph. A vertex w is said to strongly resolve a pair u,v of vertices of G if there exists some shortest u-w path containing v or some shortest v-w path containing u. A set W of vertices is a strong resolving set for G if every pair of vertices of G is strongly resolved by some vertex of W. The smallest cardinality of a strong resolving set for G is called the strong dimension of G. It is shown that the problem of finding the strong dimension of a connected graph can be transformed to the problem of finding the vertex covering number of a graph. Moreover, it is shown that computing this invariant is NP-hard. Related invariants for directed graphs are defined and studied.  相似文献   

18.
Let G be a finite connected graph with no cut vertex. A distance tree T is a spanning tree of G which further satisfies the condition that for some vertex v, dG(v, u) = dT(v, u) for all u, where dG(v, u) denotes the distance of u from v in the graph G. The conjecture that if all distance trees of G are isomorphic to each other then G is a regular graph, is settled affirmatively. The conjecture was made by Chartrand and Schuster.  相似文献   

19.
For a connected simple graph G, the eccentricity ec(v) of a vertex v in G is the distance from v to a vertex farthest from v, and d(v) denotes the degree of a vertex v. The eccentric connectivity index of G, denoted by ξc(G), is defined as v∈V(G)d(v)ec(v). In this paper, we will determine the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(n ≤ m ≤ n + 4), and propose a conjecture on the graphs with maximal eccentric connectivity index among the connected graphs with n vertices and m edges(m ≥ n + 5).  相似文献   

20.
Let D be an acyclic digraph. The competition graph of D is a graph which has the same vertex set as D and has an edge between u and v if and only if there exists a vertex x in D such that (u,x) and (v,x) are arcs of D. For any graph G, G together with sufficiently many isolated vertices is the competition graph of some acyclic digraph. The competition number k(G) of G is the smallest number of such isolated vertices.A hole of a graph is an induced cycle of length at least four. Kim (2005) [8] conjectured that the competition number of a graph with h holes is at most h+1. Recently, Li and Chang (2009) [11] showed that the conjecture is true when the holes are independent. In this paper, we show that the conjecture is true though the holes are not independent but mutually edge-disjoint.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号