首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The field of cluster analysis is primarily concerned with the sorting of data points into different clusters so as to optimize a certain criterion. Rapid advances in technology have made it possible to address clustering problems via optimization theory. In this paper, we present a global optimization algorithm to solve the hard clustering problem, where each data point is to be assigned to exactly one cluster. The hard clustering problem is formulated as a nonlinear program, for which a tight linear programming relaxation is constructed via the Reformulation-Linearization Technique (RLT) in concert with additional valid inequalities that serve to defeat the inherent symmetry in the problem. This construct is embedded within a specialized branch-and-bound algorithm to solve the problem to global optimality. Pertinent implementation issues that can enhance the efficiency of the branch-and-bound algorithm are also discussed. Computational experience is reported using several standard data sets found in the literature as well as using synthetically generated larger problem instances. The results validate the robustness of the proposed algorithmic procedure and exhibit its dominance over the popular k-means clustering technique. Finally, a heuristic procedure to obtain a good quality solution at a relative ease of computational effort is also described.  相似文献   

2.
Fuzzy c-means clustering algorithm (FCM) can provide a non-parametric and unsupervised approach to the cluster analysis of data. Several efforts of fuzzy clustering have been undertaken by Bezdek and other researchers. Earlier studies in this field have reported problems due to the setting of optimum initial condition, cluster validity measure, and high computational load. More recently, the fuzzy clustering has benefited of a synergistic approach with Genetic Algorithms (GA) that play the role of an useful optimization technique that helps to better tolerate some classical drawbacks, such as sensitivity to initialization, noise and outliers, and susceptibility to local minima. We propose a genetic-level clustering methodology able to cluster objects represented by R p spaces. The unsupervised cluster algorithm, called SFCM (Spatial Fuzzy c-Means), is based on a fuzzy clustering c-means method that searches the best fuzzy partition of the universe assuming that the evaluation of each object with respect to some features is unknown, but knowing that it belongs to circular regions of R 2 space. Next we present a Java implementation of the algorithm, which provides a complete and efficient visual interaction for the setting of the parameters involved into the system. To demonstrate the applications of SFCM, we discuss a case study where it is shown the generality of our model by treating a simple 3-way data fuzzy clustering as example of a multicriteria optimization problem.  相似文献   

3.
Clustering algorithms divide up a dataset into a set of classes/clusters, where similar data objects are assigned to the same cluster. When the boundary between clusters is ill defined, which yields situations where the same data object belongs to more than one class, the notion of fuzzy clustering becomes relevant. In this course, each datum belongs to a given class with some membership grade, between 0 and 1. The most prominent fuzzy clustering algorithm is the fuzzy c-means introduced by Bezdek (Pattern recognition with fuzzy objective function algorithms, 1981), a fuzzification of the k-means or ISODATA algorithm. On the other hand, several research issues have been raised regarding both the objective function to be minimized and the optimization constraints, which help to identify proper cluster shape (Jain et al., ACM Computing Survey 31(3):264–323, 1999). This paper addresses the issue of clustering by evaluating the distance of fuzzy sets in a feature space. Especially, the fuzzy clustering optimization problem is reformulated when the distance is rather given in terms of divergence distance, which builds a bridge to the notion of probabilistic distance. This leads to a modified fuzzy clustering, which implicitly involves the variance–covariance of input terms. The solution of the underlying optimization problem in terms of optimal solution is determined while the existence and uniqueness of the solution are demonstrated. The performances of the algorithm are assessed through two numerical applications. The former involves clustering of Gaussian membership functions and the latter tackles the well-known Iris dataset. Comparisons with standard fuzzy c-means (FCM) are evaluated and discussed.  相似文献   

4.
土壤是一个多性状的连续体,其分类的首选方法是模糊聚类分析.但是模糊聚类分析中现有的基于模糊等价关系的动态聚类法和模糊c-均值法各有利弊,采用其中一种方法聚类肯定存在不足.为此集成两种聚类方法的优点,避其缺点,提出了用基于模糊等价关系的动态聚类方法和方差分析方法确定聚类数目和初始聚类中心,再用模糊c-均值法决定最终分类结果的集成算法,并将其应用到松花江流域土壤分类中,得到了较为切合实际的分类结果.  相似文献   

5.
Based on inter-cluster separation clustering (ICSC) fuzzy inter-cluster separation clustering (FICSC) deals with all the distances between the cluster centers, maximizes these distances and obtains the better performances of clustering. However, FICSC is sensitive to noises the same as fuzzy c-means (FCM) clustering. Possibilistic type of FICSC is proposed to combine FICSC and possibilistic c-means (PCM) clustering. Mixed fuzzy inter-cluster separation clustering (MFICSC) is presented to extend possibilistic type of FICSC because possibilistic type of FICSC is sensitive to initial cluster centers and always generates coincident clusters. MFICSC can produce both fuzzy membership values and typicality values simultaneously. MFICSC shows good performances in dealing with noisy data and overcoming the problem of coincident clusters. The experimental results with data sets show that our proposed MFICSC holds better clustering accuracy, little clustering time and the exact cluster centers.  相似文献   

6.
在给定的度量空间中, 单位聚类问题就是寻找最少的单位球来覆盖给定的所有点。这是一个众所周知的组合优化问题, 其在线版本为: 给定一个度量空间, 其中的n个点会一个接一个的到达任何可能的位置, 在点到达的时候必须给该点分配一个单位聚类, 而此时未来点的相关信息都是未知的, 问题的目标是最后使用的单位聚类数目最少。本文考虑的是带如下假设的一类一维在线单位聚类问题: 在相应离线问题的最优解中任意两个相邻聚类之间的距离都大于0.5。本文首先给出了两个在线算法和一些引理, 接着通过0.5的概率分别运行两个在线算法得到一个组合随机算法, 最后证明了这个组合随机算法的期望竞争比不超过1.5。  相似文献   

7.
在给定的度量空间中, 单位聚类问题就是寻找最少的单位球来覆盖给定的所有点。这是一个众所周知的组合优化问题, 其在线版本为: 给定一个度量空间, 其中的n个点会一个接一个的到达任何可能的位置, 在点到达的时候必须给该点分配一个单位聚类, 而此时未来点的相关信息都是未知的, 问题的目标是最后使用的单位聚类数目最少。本文考虑的是带如下假设的一类一维在线单位聚类问题: 在相应离线问题的最优解中任意两个相邻聚类之间的距离都大于0.5。本文首先给出了两个在线算法和一些引理, 接着通过0.5的概率分别运行两个在线算法得到一个组合随机算法, 最后证明了这个组合随机算法的期望竞争比不超过1.5。  相似文献   

8.
An appropriate distance is an essential ingredient in various real-world learning tasks. Distance metric learning proposes to study a metric, which is capable of reflecting the data configuration much better in comparison with the commonly used methods. We offer an algorithm for simultaneous learning the Mahalanobis like distance and K-means clustering aiming to incorporate data rescaling and clustering so that the data separability grows iteratively in the rescaled space with its sequential clustering. At each step of the algorithm execution, a global optimization problem is resolved in order to minimize the cluster distortions resting upon the current cluster configuration. The obtained weight matrix can also be used as a cluster validation characteristic. Namely, closeness of such matrices learned during a sample process can indicate the clusters readiness; i.e. estimates the true number of clusters. Numerical experiments performed on synthetic and on real datasets verify the high reliability of the proposed method.  相似文献   

9.
For hierarchical clustering, dendrograms are a convenient and powerful visualization technique. Although many visualization methods have been suggested for partitional clustering, their usefulness deteriorates quickly with increasing dimensionality of the data and/or they fail to represent structure between and within clusters simultaneously. In this article we extend (dissimilarity) matrix shading with several reordering steps based on seriation techniques. Both ideas, matrix shading and reordering, have been well known for a long time. However, only recent algorithmic improvements allow us to solve or approximately solve the seriation problem efficiently for larger problems. Furthermore, seriation techniques are used in a novel stepwise process (within each cluster and between clusters) which leads to a visualization technique that is able to present the structure between clusters and the micro-structure within clusters in one concise plot. This not only allows us to judge cluster quality but also makes misspecification of the number of clusters apparent. We give a detailed discussion of the construction of dissimilarity plots and demonstrate their usefulness with several examples. Experiments show that dissimilarity plots scale very well with increasing data dimensionality.

Supplemental materials with additional experiments for this article are available online.  相似文献   

10.
Hierarchical hesitant fuzzy K-means clustering algorithm   总被引:1,自引:0,他引:1  
Due to the limitation and hesitation in one's knowledge, the membership degree of an element to a given set usually has a few different values, in which the conventional fuzzy sets are invalid. Hesitant fuzzy sets are a powerful tool to treat this case. The present paper focuses on investigating the clustering technique for hesitant fuzzy sets based on the K-means clustering algorithm which takes the results of hierarchical clustering as the initial clusters. Finally, two examples demonstrate the validity of our algorithm.  相似文献   

11.
This paper presents a novel three-phase heuristic/algorithmic approach for the multi-depot routing problem with time windows and heterogeneous vehicles. It has been derived from embedding a heuristic-based clustering algorithm within a VRPTW optimization framework. To this purpose, a rigorous MILP mathematical model for the VRPTW problem is first introduced. Likewise other optimization approaches, the new formulation can efficiently solve case studies involving at most 25 nodes to optimality. To overcome this limitation, a preprocessing stage clustering nodes together is initially performed to yield a more compact cluster-based MILP problem formulation. In this way, a hierarchical hybrid procedure involving one heuristic and two algorithmic phases was developed. Phase I aims to identifying a set of cost-effective feasible clusters while Phase II assigns clusters to vehicles and sequences them on each tour by using the cluster-based MILP formulation. Ordering nodes within clusters and scheduling vehicle arrival times at customer locations for each tour through solving a small MILP model is finally performed at Phase III. Numerous benchmark problems featuring different sizes, clustered/random customer locations and time window distributions have been solved at acceptable CPU times.  相似文献   

12.
硬聚类和模糊聚类的结合——双层FCM快速算法   总被引:3,自引:0,他引:3  
模糊c均值(FCM)聚类算法在模式识别领域中得到了广泛的应用,但FCM算法在大数据集的情况下需要大量的CPU时间,令用户感到十分不便,提高算法的速度是一个急待解决的问题。本文提出的双层FCM聚类算法是一种快速算法,它体现了硬聚类和模糊聚类的结合,以硬聚类的结果对模糊聚类的初始值进行指导,从而明显地缩短了迭代过程。双层FCM算法所用的CPU时间仅为FCM算法的十三分之一,因而具有很强的实用价值。  相似文献   

13.
We propose a new clustering approach, called optimality-based clustering, that clusters data points based on their latent decision-making preferences. We assume that each data point is a decision generated by a decision-maker who (approximately) solves an optimization problem and cluster the data points by identifying a common objective function of the optimization problems for each cluster such that the worst-case optimality error is minimized. We propose three different clustering models and test them in the diet recommendation application.  相似文献   

14.
There exist many data clustering algorithms, but they can not adequately handle the number of clusters or cluster shapes. Their performance mainly depends on a choice of algorithm parameters. Our approach to data clustering and algorithm does not require the parameter choice; it can be treated as a natural adaptation to the existing structure of distances between data points. The outlier factor introduced by the author specifies a degree of being an outlier for each data point. The outlier factor notion is based on the difference between the frequency distribution of interpoint distances in a given dataset and the corresponding distribution of uniformly distributed points. Then data clusters can be determined by maximizing the outlier factor function. The data points in dataset are divided into clusters according to the attractor regions of local optima. An experimental evaluation of the proposed algorithm shows that the proposed method can identify complex cluster shapes. Key advantages of the approach are: good clustering properties for datasets with comparatively large amount of noise (an additional data points), and an absence of important parameters which adequate choice determines the quality of results.  相似文献   

15.
贺芳 《运筹与管理》2013,22(4):133-138
针对指标数据已知,而权重数据未知的群组赋权问题,给出了一种基于改进的区间数密度集结算子来进行指标群组赋权的决策方法。首先给出了区间数和区间数密度集结算子(IDM)的定义及性质,改进了以前区间数聚类的方法,应用直接法对一维区间数据组进行聚类,并定义了模糊统计量,以确定最为合理的一种聚类方式。然后基于改进的区间数密度集结算子这种数学模型,来解决指标值数据已知,而权重未知的群组赋权问题。最后举例说明该方法的可行性和实用性。  相似文献   

16.
为了提高径向神经网络的训练精度,提出一种混合优化算法.算法将基于萤火虫算法的模糊聚类,应用到径向神经网络基函数中心向量的计算中,利用萤火虫算法良好的全局寻优能力来优化搜索基函数中心,提高了获取网络类中心的稳定性.锅炉燃烧优化的实例表明,混合优化算法达到了预期效果,提升了锅炉燃烧效率.  相似文献   

17.
This paper tackles the problem of showing that evolutionary algorithms for fuzzy clustering can be more efficient than systematic (i.e. repetitive) approaches when the number of clusters in a data set is unknown. To do so, a fuzzy version of an Evolutionary Algorithm for Clustering (EAC) is introduced. A fuzzy cluster validity criterion and a fuzzy local search algorithm are used instead of their hard counterparts employed by EAC. Theoretical complexity analyses for both the systematic and evolutionary algorithms under interest are provided. Examples with computational experiments and statistical analyses are also presented.  相似文献   

18.
The partitioning clustering is a technique to classify n objects into k disjoint clusters, and has been developed for years and widely used in many applications. In this paper, a new overlapping cluster algorithm is defined. It differs from traditional clustering algorithms in three respects. First, the new clustering is overlapping, because clusters are allowed to overlap with one another. Second, the clustering is non-exhaustive, because an object is permitted to belong to no cluster. Third, the goals considered in this research are the maximization of the average number of objects contained in a cluster and the maximization of the distances among cluster centers, while the goals in previous research are the maximization of the similarities of objects in the same clusters and the minimization of the similarities of objects in different clusters. Furthermore, the new clustering is also different from the traditional fuzzy clustering, because the object–cluster relationship in the new clustering is represented by a crisp value rather than that represented by using a fuzzy membership degree. Accordingly, a new overlapping partitioning cluster (OPC) algorithm is proposed to provide overlapping and non-exhaustive clustering of objects. Finally, several simulation and real world data sets are used to evaluate the effectiveness and the efficiency of the OPC algorithm, and the outcomes indicate that the algorithm can generate satisfactory clustering results.  相似文献   

19.
We prove polynomial-time solvability of a large class of clustering problems where a weighted set of items has to be partitioned into clusters with respect to some balancing constraints. The data points are weighted with respect to different features and the clusters adhere to given lower and upper bounds on the total weight of their points with respect to each of these features. Further the weight-contribution of a vector to a cluster can depend on the cluster it is assigned to. Our interest in these types of clustering problems is motivated by an application in land consolidation where the ability to perform this kind of balancing is crucial.Our framework maximizes an objective function that is convex in the summed-up utility of the items in each cluster. Despite hardness of convex maximization and many related problems, for fixed dimension and number of clusters, we are able to show that our clustering model is solvable in time polynomial in the number of items if the weight-balancing restrictions are defined using vectors from a fixed, finite domain. We conclude our discussion with a new, efficient model and algorithm for land consolidation.  相似文献   

20.
We introduce a new class of set covering heuristics, based on clustering techniques. In its simplest form, a heuristic in this class may be described as follows: firstly, partition the column set into clusters formed by columns that are close to each other (e.g. in the Hamming distance sense). Then select a best (e.g. a cheapest) column in each cluster; if the selected columns form a coverC, then extract fromC a prime cover and stop; else, modify the partition (e.g. by increasing the number of clusters) and repeat. We describe two implementations of this general algorithmic strategy, relying on the Single Linkage and the Leader clustering algorithm, respectively. Numerical experiments performed on 72 randomly generated test problems with 200 or 400 rows and 1000 columns indicate that the above two heuristics often yield cheaper covers than other well-known (greedy-type) heuristics when the cost-range is not too narrow.The present work is based on R.K. Kwatera's dissertation, written under the supervision of B. Simeone. A preliminary version was presented at EURO VIII, Paris, July 1988.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号