首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The ionic conductivity of the bulk phase of bonded hydronium NASICON (HyceramTM) was measured at equilibrium with an H2O/N2 and then a D2O/N2 atmosphere, each at 100% relative humidity and 75% relative humidity over the temperature range 25°C to 50°C. At 100% relative humidity and 25°C, the protonic system had a bulk conductivity of 5.0×10−4 S/cm and an activation energy of 17.3kJ/mole; the same sample, when deuterated, had a bulk conductivity of 2.2×10−4 S/cm and an activation energy of 19.3kJ/mole. At 75% relative humidity and 25°C, the conductivity of the protonated system decreased to 1.4×10−4S/cm with an activation energy of 24.1 kJ/mole. The deuterated sample at 75% relative humidity had a bulk conductivity of 5.4×10−5 S/cm with an activation energy of 26.0 kJ/mole. The isotope effect suggested a proton hopping (Grotthus) mechanism as the means by which the protons pass through the lattice.  相似文献   

2.
Three kinds of peroxo-polytungstic acid (PPTA, C-PPTA and N-PPTA) were obtained by reacting hydrogen peroxide with metallic tungsten, tungsten carbide or tungsten nitride, respectively. Polytungstates, C-PPTA and N-PPTA, were found to contain oxalate and nitrate ligands. Their proton conductivities were compared using thin film specimens spin-coated from their water solution. Conductivity of each as-coated film was in the range from 10−3 to 10−4 S cm−1 under the relative humidity of 40% (25 °C). A sharp decrease in conductivity (to less than 10−7 S cm−1 at 25 °C) was observed for PPTA without acidic ligands after thermal treatment at 80 °C. However, the effect of thermal treatment on C-PPTA or N-PPTA was much milder. A 80 °C-treated C-PPTA film showed the conductivity of 1.0 × 10−5 S cm−1 (25 °C) with a very weak dependency on ambient humidity.  相似文献   

3.
We have investigated the thermal and ionic conductivity properties of the elastomer poly(ethylene oxide-co-epichlorohydrin) filled with NaI and I2. The reason for using this composition is its potential application as electrolyte in photoelectrochemical cells. This copolymer was characterized as a function of NaI concentration, temperature and relative humidity. According to the data obtained, the Na+ ion interacts with the ethylene oxide repeating units by means of Lewis type acid–base interactions. The empirical Vogel–Tamman–Fulcher equation was used to model the conductivity and temperature relationships, indicating that the conduction occurs in the amorphous phase of the copolymer. The sample with 9.0% (w/w) of NaI presents a conductivity of 1.5×10−5 S cm−1 in a dry atmosphere (30°C, [H2O]<1 ppm) and 2.0×10−4 S cm−1 at 86% relative humidity (22°C).  相似文献   

4.
In this work we studied the ionic conductivity for three copolymers of the title co-monomers as a function of LiClO4 content, temperature and ambient relative humidity. We also investigated the interactions between the salt and the co-monomer blocks in the copolymers and its effect on the morphology and thermal properties of the copolymer/salt complexes. Our data indicate that the Li+ ion predominantly interacts with the ethylene oxide repeating units of the copolymers. The copolymer with the highest ionic conductivity was obtained with an ethylene oxide/epichlorohydrin ratio of 84/16 containing 5.5% (w/w) of LiClO4. It showed a conductivity of 4.1×10−5 S cm−1 (30°C, humidity< 1 ppm) and 2.6×10−4 S cm−1 at 84% relative humidity (24°C). The potential stability window of the copolymer/salt complex is 4.0 V, as measured by cyclic voltammetry. For comparison, we also prepared a blend of the corresponding homopolymers containing LiClO4; it showed higher crystallinity and lower ionic conductivity.  相似文献   

5.
Transport properties of SrCe0.95Y0.05O3−δ were studied by impedance spectroscopy and by measuring open-cell voltage (OCV) and gas permeation. Ionic transference numbers were determined by measuring the OCV of concentration cells and water vapor evolution of an O2/H2 fuel cell. We observed interfacial polarization on the basis of the IV curves obtained by discharging a hydrogen concentration cell or an O2/H2 fuel cell. The observed high protonic conductivity (high proton and low oxide ion transference numbers) makes SrCe0.95Y0.05O3−δ a potential material for hydrogen separation. From proton conductivity measurements, under a given hydrogen partial pressure difference of 4%/0.488%, the hydrogen permeation rate (of a dense membrane with 0.11 cm in thickness) was calculated to be ≈0.072 cm3 (STP) cm−2 min−1 at 800°C, whereas the permeation rate calculated from short-circuit current measurements was ≈0.023 cm3 (STP) cm−2 min−1 at 800°C. The difference between calculated and observed permeation rates is probably due to interfacial polarization.  相似文献   

6.
The electrical conductivity of single crystal lithium niobate (LiNbO3) was determined as a function of temperature for various oxygen partial pressures. The electrical conductivity is proportional to Po2−1/4 which can be explained by a defect equilibrium involving singly ionized oxygen vacancies and electrons.

Measurements of electrical transport numbers at 1000°K show the electrical conductivity of LiNbO3 to be ionic at one atmosphere of oxygen and electronic at low oxygen partial pressures.

Thermoelectric measurements indicate that LiNbO3 at low oxygen partial pressures is n-type and that the concentration of electrons at 1000°K and in an atmosphere of 50% C0/50% CO2a is 4 × 1017cm3 with a mobility of 1.7 cm2V sec.

The diffusion of oxygen in LiNbO3 was determined as a function of temperature at an oxygen partial pressure of 70 Torr. by measuring O18/O16 isotope exchange with the gas phase as a function of time. The diffusion data may be represented by D = 3.03 × 10−6 exp (−29.4 kcal mole−1/RT)cm2sec. Consideration of the Nernst-Einstein relation for oxygen and the variation in conductivity with Li2O activity indicate that the ionic conduction is caused by transport of lithium ions.  相似文献   


7.
Electrical properties of calcia-doped ceria with oxygen ion conduction   总被引:3,自引:0,他引:3  
The electrical conductivity of sintered specimens of (CeO2)1−x(CaO)x was investigated by employing a standard four-probe dc technique as a function of temperature between 400°C and 900°C, composition from 0.10x0.80, and oxygen partial pressure from 10−18 to 1 atm. The temperature and composition dependence of the emf have been carried out with a concentration cell. X-ray diffraction studies indicated that a cubic fluorite crystal remained in all specimens studied, although the solubility limit of CaO in CeO2 was assumed to lie close to 23 mol% from the change of the lattice constant. The magnitude of the conductivity decreased slightly with increase of the dopant concentrations up to x=0.50. The conductivity of these specimens was about 100 times larger than that of calcia-stabilized zirconia at 600°C with a smaller activation energies of 0.83–0.89 eV. With further increasing dopant concentrations, the magnitude of the conductivity was found to decrease remarkably. With an increase in the dopant concentration, the domain of primarily ionic conduction extended to a lower partial pressure. The conductivity of (CeO2)0.50(CaO)0.50 was found to be primarily ionic down to 10−12 atm even at 900°C. These results indicate that CaO-doped CeO2 may be more an attractive candidate for fuel cells and other applications.  相似文献   

8.
We have focused on the PEG-borate ester as a new type of plasticizer for solid polymer electrolyte composed of poly(ethyleneglycol) methacrylate (PEGMA) and lithium bis-trifluoromethanesulfonimide (LiTFSI). The PEG-borate ester shows good thermal stability and high flash point. Ionic conductivity of the polymer electrolyte increases with increasing amount of the PEG-borate ester and exhibits values greater than 10−4 S cm−1 at 30 °C and 10−3 S cm−1 at 60 °C. Furthermore, PEG-borate ester has three EO chains whose lengths are variable, and various ionic conductivities are expected to depend on EO chain length. As a result, polymer electrolyte containing the PEG-borate ester whose EO chain length is n=3 shows highest ionic conductivity. Furthermore, polymer electrolytes containing PEG-borate esters show excellent thermal and electrochemical stability. The electrolytes are thermally stable up to 300 °C and electrochemically up to 4.5 V vs. Li+/Li.  相似文献   

9.
Ag+/Na+ ion-exchanged aluminosilicate glasses with uniform concentration profiles were prepared, and their electrical conductivities were investigated as functions of the ion-exchange ratio and the initial glass compositions. In the case of the ion-exchanged glasses of x20Ag2O–(1−x)20Na2O–10Al2O3–70SiO2 in mol%, the conductivity, σ, and its activation energy, Eσ, showed a minimum and a maximum at the same ion-exchange ratio x=0.3, respectively, and the mixed mobile ion effect (MMIE) was observed. The fully ion-exchanged sample attained σ=3.5×10−5 S/cm at 200 °C, which was 1.5 orders of magnitude larger than that of initial glass. In the case of x25Ag2O–(1−x)25Na2O–25Al2O3–50SiO2, the mixed mobile ion effect was also observed at x=0.5. The maximum conductivity of 2×10−4 S/cm at 200 °C was obtained in the fully ion-exchanged glass sample.

The electric relaxation analysis was also conducted on both systems, and Kohlrausch–Williams–Watts (KWW) fractional exponent β was obtained as a function of x. The decrease of β was observed near x≈0.3 in the former system, while that of the later system was independent of the ion-exchange ratio. Based on the structural analysis results, the observed behaviors were investigated from the point of view of the occupation of Ag+ ions on the non-bridging oxygen-site (NBO-site) and the charge compensation-site (CC-site) of AlO4 tetrahedral unit.  相似文献   


10.
Polyelectrolyte biopolymers such as calcium alginate are becoming increasingly important for the recovery of heavy metals from aqueous solutions. To understand the mechanism of ion transport in these biopolymer systems, the transport of copper ions into calcium alginate gels was investigated using proton nuclear magnetic resonance (NMR) microscopy. Copper ion transport was imaged using an inversion recovery technique which utilizes the paramagnetic effect of copper on water proton relaxation times. Diffusion experiments were performed in a diffusion cell designed to approximate a semi-infinite slab geometry at temperatures between 278 and 313 K using copper reservoir concentrations between 10 and 60 mM. The diffusion coefficient of copper in these gels was calculated from the NMR data to fit a combined diffusion-reaction model involving a diffusion term (D) and a kinetic binding term (k). At 23 °C, the diffusion coefficients in 1, 2, and 3% (w/v) gels were 3.1 · 10−10, 2.0 · 10−10, and 1.4 · 10−10 m2/s, respectively. The activation energy for diffusion in the 2% (w/v) gel was 28 kJ/mol.  相似文献   

11.
The results of the impedance spectroscopy measurements on eutectic samples based on zirconium oxide are presented here. Samples of CaZrO3---ZrO2(cubic) and MgO---ZrO2(cubic) have been grown by a directional solidification procedure such that the different phases appear nearly oriented along the growth direction (lamellae in the system of CaZrO3-ZrO2(cubic) and fibers of MgO in a ZrO2 matrix in the other system). The DC electrical conductivity has been measured by impedance spectroscopy along and across the growth axis. For CaZrO3---ZrO2 the coductivity is clearly anisotropic. The following values for σT have been obtained: the conductivity at 600 °C equals 2.0 × 10−6 Ω−1 cm−1 perpendicular to the fiber axis and 1.4 × 10−5 Ω−1 cm−1 parallel to it and with an activation energy of 1.3 eV for σT. For MgO---ZrO2(cubic) the isotropic value of the conductivity at 600 °C is 10−4 Ω−1 cm−1 with activation energy for σT of 1.5 eV. The anisotropic conductivity in the CaZrO3---ZrO2 (cubic) system has been explained by a model of an ordered stacking of oxygen conducting (cubic ZrO2) and non-conducting (CaZrO3 or MgO) phases.  相似文献   

12.
Thin films of copper oxide with thickness ranging from 0.05–0.45 μm were deposited on microscope glass slides by successively dipping them for 20 s each in a solution of 1 M NaOH and then in a solution of copper complex. Temperature of the NaOH solution was varied from 50–90°C, while that of the copper solution was maintained at room temperature. X-ray diffraction patterns showed that the films, as prepared, are of cuprite structure with composition Cu2O. Annealing the films in air at 350°C converts these films to CuO. This conversion is accompanied by a shift in the optical band gap from 2.1 eV (direct) to 1.75 eV (direct). The films show p-type conductivity, 5×10−4 Ω−1 cm−1 for a film of thickness 0.15 μm. Electrical conductivity of this film increases by a factor of 3 when illuminated with 1 kW m−2 tungsten halogen radiation. Annealing in a nitrogen atmosphere at temperatures up to 400°C does not change the composition of the films. However, the conductivity in the dark as well as the photoconductivity of the film increases by an order of magnitude. The electrical conductivity of the CuO thin films produced by air annealing at 400°C, is high, 7×10−3 Ω−1 cm−1. These films are also photoconductive.  相似文献   

13.
Glasses in the binary system xAg2P2O6 − (1 − x)Ag2Te2O5 have been prepared for 0 x 1. For each composition only one glass transition temperature is observed in the temperature range of 180–220 °C. All glasses appear homogeneous considering their optical and electrical properties. Nevertheless, in SEM observations, some glass compositions appear to be heterogeneous after decoration following short nitric acid etching. For each composition, conductivity data obtained in the temperature range of 25–200 °C using impedance techniques obey an Arrhenius relationship with a composition independent pre-exponential term. Variation of the conductivity activation energy with x induces correlative variations of isothermal conductivity curves leading to an increase of the ionic conductivity of about one order of magnitude compared with linearity at 25 °C. This behaviour is discussed with respect to the thermodynamic properties of the glassy solutions.  相似文献   

14.
The effects of dopants on the electrical conductivity of the perovskite-type oxide LaInO3 have been investigated. Replacement of La by Sr is the most effective way to enhance the conductivity of LaInO3, whereas Ca substitution for In is rather difficult due to the large difference in the ion radii. The optimum composition is La0.9Sr0.1InO3−δ whose maximum conductivity is 7.6×10−3 S cm−1 at 900°C. The electrical conductivity of La0.9Sr0.1InO3−δ has been measured over a wide range of oxygen partial pressure from pO2=1 to 10−25 atm. P-type and n-type behavior at high and low oxygen partial pressure have been observed, respectively, while at intermediate oxygen partial pressures, the electrical conductivity changes only slightly with the oxygen partial pressure. The concept of a single layer solid oxide fuel cell based on a La0.9Sr0.1InO3−δ ceramic pellet has been tested. A maximum power density of 3 mW cm−2 at 800°C was achieved when dilute H2 and air were used as fuel and oxidizing agent, respectively.  相似文献   

15.
Firstly, the production of solid bulk specimens of the proton conductor Ba3Ca1.18Nb1.82O9 − gd (BCN18) of known water content up to [H.] = nH/nBa = 0.16 is described. Secondly, measuring the length change of such samples versus water content [H.] demonstrated that the sample lengths increased linearly with a slope of (Δl/l)/[H.] = (2.13 ±0.07) × 10−2. Thirdly, the density of bulk samples was found to decrease linearly with water content [H.]. This decrease was in good agreement with the above values derived from the length change. Fourthly, high temperature dilatometry showed that samples reach the thermodynamic solubility values in water vapor atmospheres only at temperatures above 700 °C. Two time scales were observed for the time-dependence of the elongation upon exposure to water vapor. A fast process occurred within minutes above 700 °C, a slow one took several hours. The fast one was identified as the chemical diffusion of the diffusion pair H. and Vo. which is required for the water uptake and loss of BCN18. The chemical diffusivity of water is described by the parameters D0 = (0.022 ± 0.002) cm2/s and ΔH* = (0.79 ± 0.05) eV.  相似文献   

16.
A new lithium ionic conductor of the thio-LISICON (LIthium SuperIonic CONductor) family was found in the binary Li2S–P2S5 system; the new solid solution with the composition range 0.0≤x≤0.27 in Li3+5xP1−xS4 was synthesized at 700 °C and characterized by X-ray diffraction measurements. Its electrical and electrochemical properties were studied by ac impedance and cyclic voltammetry measurements, respectively. The solid solution member at x=0.065 in Li3+5xP1−xS4 showed the highest conductivity value of 1.5×10−4 S cm−1 at 27 °C with negligible electronic conductivity and the activation energy of 22 kJ mol−1 which is characteristic of high ionic conduction state. The extra lithium ions in Li3PS4 created by partial substitution of P5+ for Li+ led to the large increase in ionic conductivity. In the solid solution range examined, the minimum conductivity was obtained for the compositions, Li3PS4 (x=0.0 in Li3+5xP1−xS4) and Li4P0.8S4 (x=0.2 in Li3+5xP1−xS4); this conductivity behavior is similar to other thio-LISICON family with the general formula, LixM1−yMy′S4 (M=Si, Ge, and M′=P, Al, Zn, Ga, Sb). Conduction mechanism and the material design concepts are discussed based on the conduction behavior and the structure considerations.  相似文献   

17.
The perylene iodine system was prepared by a vapour-phase reaction without the use of solvents. Compositions between peryleneI2 and peryleneI6 were synthesized and studied by gravimetric analysis, infrared spectroscopy, X-ray diffraction and temperature-dependent resistivity measurements. Infrared spectra in the region 400–4000 cm−1 taken after different amounts of iodine were removed from the sample are distinct from perylene with new absorption lines at 1551 and 1302 cm−1 and shifts of some perylene frequencies. Powder X-ray diffraction measurements indicate that the lattice is monoclinic with parameters a=11.65 Å, b=10.85 Å, c=10.1 Å, β=100.5°. The (1 0 0) reflection, which is forbidden in the space group of perylene, is observed from the compound. The material is electrically conductive and obeys Ohm's law at high temperatures. At low temperatures and high currents, nonlinear effects are observed. The conductivity of the material increases to 1.0 (Ω cm)−1 at room temperature as the iodine content increases to a composition of peryleneI6. The resistivity obeys an exponential temperature dependence.  相似文献   

18.
The sessile-drop method is used to measure the surface tension and density of liquid indium and uranium under high vacuum. Measurements are made over the temperature range 156–500°C for In and at the melting point for U. Surface oxides are efficiently removed with a glow discharge system. Drop profiles are captured by photograph and processed using nonlinear regression to yield the surface tension and density. In this regression procedure, normal distances from calculated profiles to data points are minimized. For indium, the density and surface tension measurements yield mp = 7.05 × 103kg/m3, d/dT = −0.776 kg/m3·°C, and γmp = 0.568 N/m, dγ/dT = −9.45 × 10−5 N/m·°C. The results for uranium at the melting point are mp = 17.47 × 103 kg/m3 and γmp = 1.653 N/m.  相似文献   

19.
Nd2CuO4±δ is the non-superconducting prototype of the Re2−xMxCuO4ty family (Re=Pr, Nd, Sm and M=Ceor Th) of n-type oxide superconductors. Four-probe DC conductivity, EMF in P(O2) gradient, and thermopower measurements have been used to characterise its electric transport and defect structure between 300 and 900°C and between 5×10−4 and 1 atm oxygen partial pressure.

The results show that Nd2CuO4±δ can be oxygen under-stoichiometric (with n-type conductivity), near-stoichiometric, and over-stoichiometric (with p-type conductivity) in different T, P(O2) ranges.  相似文献   


20.
Tracer diffusion of 18O in dense, polycrystalline La1−xSrxCoO3 for x = 0.1 has been measured in the temperature range 400 to 600 °C and at 500 °C for x = 0.2 at an oxygen partial pressure of 1 × 105 Pa. Depth profiles were obtained by secondary ion mass spectrometry. The diffusion coefficient for La0.9Sr0.1CoO3 is given by D = (17–247) exp[(−232 ± 8 kJ/mole)/RT] cm2/s. This value is several orders of magnitude lower than D extrapolated from the results for x = 0.2 measured in the 700–900 °C temperature range. One possible explanation for the discrepancy is that the two measurements reflect different diffusion paths. As expected, La0.8Sr0.2CoO3 exhibits a higher diffusivity at 500 °C than does La0.9Sr0.1CoO3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号