首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 615 毫秒
1.
Aromatic poly(amic acids) derived from pyromellitic dianhydride and 4,4′,-diaminodiphenyl ether were characterized by dilute solution techniques. Number-average molecular weights M?n of 13 samples ranged from 13,000 to 55,000 (DP 31–131). Weight-average molecular weights M?w of 21 samples ranged from 9,900 to 266,000. The ratio M?w/M?n was between 2.2 and 4.8. Heterogeneous polymerization yielded higher molecular weight polymer than homogeneous polymerization. The molecular weight could be varied systematically by control of stoichiometric imbalance. Use of very pure monomers and solvent gave polymers of relatively high number-average molecular weight (~50, 000) and the most probable molecular weight distribution M?w/M?n = 2. Impure monomers and/or solvent resulted in lower number-average molecular weight (M?n ? 20,000–30,000) and wider distributions (M?w/M?n = 3–5). The Mark-Houwink relation obtained was [η] = 1.85 × 10?4M?w0.80 The exponent is characteristic of moderately extended solvated coils. The unperturbed chain dimensions (r02 /M)1/2 were 0.848 A., and the steric factor σ was 1.24 which is close to the limiting value of unity for an equivalent chain with free internal rotations. The sedimentation constant–molecular weight relation was S0 = 2.70 × 10?2M?w0.39. This exponent is consistent with the Mark-Houwink exponent.  相似文献   

2.
Data are presented which show that when a polymer contains an appreciable amount of low molecular weight species below the diffusion limit of the osmometer membrane, the osmotic molecular weight, M?n, is generally higher than the M?n calculated from gel-permeation chromatography (GPC). Experiments were performed on samples of poly(vinyl chloride) (PVC) and high-cis polybutadiene polymers. Osmotic data were obtained in the usual manner, while GPC data were obtained using the universal calibration approach. It was found that when all polymer species below approximately 10,000 molecular weight were excluded from the calculation of M?n by GPC, agreement in M?n was obtained between membrane osmometry and GPC. The data obtained suggest that the choice of M?n as measured by membrane osmometry in the calibration of the GPC should not be done casually, as the measured M?n may not reflect the “true” value of that sample, especially when the polymer sample contains an appreciable amount of low molecular weight material.  相似文献   

3.
1,1,3,3-Tetramethyl-1,3-disilacyclobutane (I) was polymerized under the following conditions with H2PtCl6·6H2O as catalyst: (a) addition of I dropwise to a large excess of catalyst at room temperature, producing [(CH3)3SiCH2(CH3)2Si]2O in 90% yield; (b) polymerization at room temperature in the presence of 10% water with 23 ppm Pt, yielding 9% conversion to low molecular weight polymer after 4 weeks; (c) polymerization in an open vessel (25°C., 7 ppm Pt, M?n = 1.2 × 105), a closed vessel (100°C., 28 ppm Pt, M?n = 1.7 × 105), in a closed tube after twice freezing and evacuating (25°C., 23 ppm Pt, M?n = 2.9 × 105); (d) polymerization in an oxygen atmosphere (25°C., 17 ppm Pt, M?n = 2.7 × 105). The molecular weight distributions of the polymers with M?n = 1.2 × 105 and 1.7 × 105 was studied by gel-permeation chromatography. Ratios of M?w/M?n are 3.1 and 2.7, respectively. In both cases a long tail of high molecular weight polymer is evident. Interpretation of the molecular weight distributions is qualitatively discussed on the basis of a postulated seven-step mechanism. Water is shown to be a source of chain termination. Evidence is presented for the existance of ?SiOSi? and ?SiOH in the silmethylene polymers. Negligible cyclization occurs. Orders of thermal stability measured by DTA and TGA for polydimethylsilmethylene (A), polydimethylsiloxane (B), and polysiobutylene (C) are: in He, A > B > C; in air, in air, B > C ? A. A fractionally precipitated polydimethylsilmethylene had a weight loss of less than 5% by 600°C. by TGA analysis at 10°C./min. in He.  相似文献   

4.
Styrene has been copolymerized at low conversion with minor quantities of p-divinyl-benzene (p-DVB) in (10–15%) solution in toluene and cyclohexane. Under these conditions the molecular weight of the polystyrene formed in the absence of p-DVB was controlled by chain transfer, and the copolymerization coefficients of the styrene and the p-DVB agreed with previous work. Polymer molecular weights were studied as a function of conversion. At very low conversions the number-average (2.2 × 105) and the weight-average (4.4 × 105) molecular weights were unaffected by substituting some of the styrene by p-DVB, but as the reaction continued M?n increased slowly and M?w much faster. On the other hand, even at the lowest conversions the intrinsic viscosity was drastically reduced by the introduction of p-DVB, and the radius of gyration, as measured by light scattering, fell. Infrared studies on the polymer show that the concentration of pendent double bonds in low-conversion copolymers is about half of the doubly substituted phenyl groups. It is concluded that the first polymer chains formed are extensively cyclized with the formation of a relatively large number of small rings.  相似文献   

5.
Solutions of polystyrene in p-xylene were frozen in liquid nitrogen. No changes in molecular weight and distribution were caused by freezing solutions for a series of narrow distribution polystyrenes with molecular weights of near 2 × 106 and lower. Likewise a commercial polystyrene of M?w = 234,000 showed no change, even after 45 cycles of freezing and thawing. However, an ultrahigh molecular weight polystyrene (M?w = 7.3 × 106) showed appreciable degradation even after a few freezing cycles of its solutions. The changes in molecular weight and distribution were analyzed by gel-permeation chromatography. The results depended very much on the choice of solvent, cooling rate, and concentration. The extent of degradation was found to depend on polymer concentration in two distinct ways. Indeed, two different degradation mechanisms have been distinguished at low and at high concentrations. The change between mechanisms took place between 1.0 and 2.5 g/l. for polystyrene in p-xylene. This appears to provide a rare measure of polymer-polymer interactions (entanglements) in dilute solutions. Degradation in the entanglement region proceeded via a random chain-scission mechanism as tested by the Scott method. In contrast, at low concentrations degradation was characterized by the formation of appreciable amounts of low molecular weight polystyrene. The presence of an antioxidant (Ionol) during freezing did not change the extent of degradation significantly.  相似文献   

6.
A series of polystyrenes with weight-average molecular weight M?w up to 1.3 × 107 was prepared by anionic polymerization in tetrahydrofuran (THF). Each sample was characterized by gel-permeation chromatography, light scattering, and viscometry. It was found that each sample had an almost symmetrical and very narrow molecular weight distribution (M?w/M?n < 1.07). The mean-square unperturbed radius of gyration 〈S20 was determined in trans-decalin at 20.4°C as 〈S20 = 7.86 × 10?18M?w (cm2). The particle scattering factor was well represented by the Debye equation irrespective of solvent in the range of M?w < 4 × 106, and only a small deviation was observed in benzene at higher molecular weights. The penetration function Ψ ≡ A2M2/4π3/2NAS23/2 was found to approach a relatively low asymptotic value of 0.21–0.23 at molecular weights above 2 × 106 in benzene at 30°C, where A2 is the second virial coefficient and NA is Avogrado's number. It was also found that the theta temperature in trans-decalin was affected by the nature of polymer samples. A difference of about 3°C in the theta temperature was observed between two series of anionic polystyrenes, one prepared in THF and the other in benzene, but there was practically no difference in unperturbed chain dimension.  相似文献   

7.
Several important aspects of the flow in polymer melts through capillaries remain unexplored. This paper examines experimentally one such effect associated with the radial shear-stress gradient in capillaries. During capillary melt flow of a polymer with a wide molecular weight distribution, migration of the large molecules away from the region of highest shear stress, i.e., at the capillary wall, has been predicted but only modestly investigated. This effect has the potential to produce a molecular weight spectrum over the cross section of extruded polymer. Studies of distribution in shear were conducted on a well-characterized wide-distribution polystyrene (M?w = 234,000). An Instron Rheometer equipped with a long capillary (length/diameter ratio of 66.7) was used to perform the extrusion at temperatures of 160–250°C. A solvent coring procedure was used to dissolve away concentric layers of polymer from the extrudate for molecular weight analyses. The method has been shown to cut clean sections without selective extraction. Values of M?w, M?n and M?w/M?n were calculated from complete molecular weight distribution data obtained by calibrated gel permeation chromatography. For a wide range of shear rates and temperatures, no evidence for molecular fractionation was observed. Shear degradation of this polymer was found to be small. However, at high shear rates at 250°C, evidence indicating extensive shear-induced thermal degradation was found. No evidence for oxidative degradation at the extrudate surface was found at either low or high shear rates at this temperature.  相似文献   

8.
The radiation-induced heterogeneous polymerization of ethylene in ethyl alcohol was carried out in a reactor with a capacity of 100 ml under the following reaction conditions: temperature, 24 ± 3°C; pressure, 200–400 kg/cm2; amount of ethyl alcohol, 30–70 ml; dose rate, 3.7 × 104?1.05 × 105 rad hr. The effects of amount of ethyl alcohol, pressure, and dose rate on the rate of polymerization at the steady state, the amount of polymerized monomer, the molecular weight of polymer, and the number of polymer chains were studied compared with the results obtained in the polymerization in tert-butyl alcohol. It was found that there is an acceleration period in the early stage of reaction followed by a steady state. The rate of polymerization was maximum when about 50 ml of ethyl alcohol was used. The molecular weight of polymer increased with a decrease in the amount of ethyl alcohol. The dependences of pressure (p) and dose rate (I) on the rate of polymerization at steady state (Rs) and the molecular weight of polymer (M?n) were expressed as follows; Rsp0.74, M?np0.3?0.4, Rs ∝ I0.9 and M?nI?0.1 ?0.0. The results were analyzed by a kinetic treatment based on a reaction mechanism containing both first-and second-order terminations. The rate constant of first-order termination by radical occlusion was considerably larger than that in the polymerization in tert-butyl alcohol, because the affinity of ethyl alcohol for polyethylene is smaller than that of tert-butyl alcohol. It was found that chain transfer to ethyl alcohol takes place easily and the G value of ethyl alcohol for initiation is larger than 1.5.  相似文献   

9.
The drawing behavior of a series of linear polyethylene homopolymers with weight-average molecular weight (M?w) ranging from 67,800 to ~3,500,000 and variable distribution (M?w/M?n = 5.1?20.9) has been studied. Sheets were prepared by two distinct routes: either by quenching the molten polymer into cold water or by slow cooling below the crystallization temperature (~120°C) followed by quenching into cold water. When the samples (2 cm long) were drawn in air at 75°C using a crosshead speed of 10 cm/min it was found that for low M?w polymers the initial thermal treatment has a dramatic effect on the rate at which the local deformation proceeds in the necked region. At high M?w such effects are negligible. An important result was that comparatively high draw ratios (λ > 17) and correspondingly high Young's moduli could be obtained for a polymer with M?w as high as 312,000. It is shown how some of the structural features of the initial materials (mainly studied by optical microscopy, small-angle x-ray scattering and low-frequency laser Raman spectroscopy) can be interpreted in terms of the molecular weight and molecular weight distribution of the polymers. Although crystallization and morphology can be important at low M?w, it suggested that the concept of a molecular network which embraces both crystalline and noncrystalline material is more helpful in understanding the drawing behavior over the whole range of molecular weights.  相似文献   

10.
Results from the dilute solution characterization of polyfluoroalkoxyphosphazenes in Freon ether (E2) solutions are reported. Anomalous viscosity data suggest that polymer aggregation sometimes occurs in E2 and may be caused by the presence of relatively few anomalous polar groups on the polymer backbone. Since small amounts of acetone added to the E2 solutions inhibit aggregate formation, samples are also characterized in an E2-acetone mixed solvent. Light scattering and osmometry indicate that E2 and E2-acetone (9.09% by volume) are theta solvents for the polymers. High molecular weights (M?w < 3 × 106) and unusually broad molecular weight distributions (M?w/M?n < 16) are found. One polymer is fractionated by extracting solutions in 1,1,2-trichloro-1,2,2-trifluoroethane with acetone. Although the samples are highly polydisperse, intrinsic viscosities correlate with number-average molecular weights satisfying the Mark-Houwink relation with the exponent a ≈ 1/2. The z-average mean-square radius of gyration increases linearly with molecular weight so that 〈S2g/M?w ≈ 0.098. Because of the large polydispersity and unknown form of the distribution function, a quantitative interpretation of characterization results relating dilute solution parameters to polymer skeletal structure is not possible. The tentative conclusion is that the fluoroalkoxy-substituted phosphazene polymers are relatively linear and therefore that the broad distribution of molecular weights must be due to some polymerization mechanism other than branching.  相似文献   

11.
Polyaddition of 1,4-benzenedithiol (BDT) to 1,4-divinylbenzene (DVB) was carried out with 2,2′-azobisisobutyronitrile initiator in toluene at 75°C under a nitrogen atmosphere. The polymerization proceeded without an induction period, to give a white polymer with a high molecular weight (M?w = 110,000) in ca. 90% yield for 2 hr. It was confirmed by 1H-NMR (nuclear magnetic resonance), IR (infrared) and sulfur contents that the polymer had an alternating structure of DVB and BDT units. The end-capping reaction of the polymer was also achieved by addition of thiophenol and/or styrene to the polymerization solution at a final stage of the polymerization. The polymer film exhibited a reversible phase transition between a transparent state and an opaque one by thermal mode. The thermal property of the polymer was studied by differential scanning calorimetry (DSC) analysis and polarized optical microscope observation with the polymer film. The detailed DSC analysis showed that the end-capped polymer with a relatively low molecular weight (M?W = 4400–9600) exhibited similar to liquid crystalline behavior. A diffuse reflectance spectrum of the polymer coated on an aluminum plate showed a marked difference in reflective light intensity in the ultraviolet and visible regions: the reversible phase transition between an opaque and a transparent polymer layers was induced by thermal mode. The light transmittance of the polymer film, which was measured by depolarized light intensity method, was very sensitive toward the temperature variation.  相似文献   

12.
Anionic polymerization of ferrocenylmethyl methacrylate (FMMA) was investigated using high-vacuum techniques. Initiators used included n-butyllithium, sodium naphthalide, potassium naphthalide, Grignard reagents (both C2H5MgBr and C6H5MgBr), sodium methoxide, and lithium aluminum hydride. FMMA polymerization was readily initiated by each of the above initiators with the exception of sodium methoxide. The molecular weight of poly(ferrocenylmethyl methacrylate) could be controlled by varying the monomer-to-initiator ratio when lithium aluminum hydride was used in tetrahydrofuran (THF). In this system, poly(ferrocenylmethyl methacrylate), soluble in benzene or THF, was prepared with M?n as high as 277,000 with a relatively narrow molecular weight distribution compared to samples prepared by radical-initiated polymerization. The Mark-Houwink values of K and a, determined in THF, were K = 4.94 × 10?2 and a = 0.53 (when M = M?n) and K = 3.72 × 10?2 and a = 0.51 (when M = M?w). It is clear that the polymer is moderately coiled in THF.  相似文献   

13.
Living cationic polymerization of alkoxyethyl vinyl ether [CH2?CHOCH2CH2OR; R: CH3 (MOVE), C2H5 (EOVE)] and related vinyl ethers with oxyethylene units in the pendant was achieved by 1-(isobutoxy)ethyl acetate ( 1 )/Et1.5AlCl1.5 initiating system in the presence of an added base (ethyl acetate or THF) in toluene at 0°C. The polymers had a very narrow molecular weight distribution (M?w/M?n = 1.1–1.2) and the M?n proportionally increased with the progress of the polymerization reaction. On the other hand, the polymerization by 1 /EtAlCl2 initiating system in the presence of ethyl acetate, which produces living polymer of isobutyl vinyl ether, yielded the nonliving polymer. When an aqueous solution of the polymers thus obtained was heated, the phase separation phenomenon was clearly observed in each polymer at a definite critical temperature (Tps). For example, Tps was 70°C for poly(MOVE), and 20°C for poly(EOVE) (1 wt % aqueous solution, M?n ~ 2 × 104). The phase separation for each case was quite sensitive (ΔTps = 0.3–0.5°C) and reversible on heating and cooling. The Tps or ΔTps was clearly dependent not only on the structure of polymer side chains (oxyethylene chain length and ω-alkyl group), but also on the molecular weight (M?n = 5 × 103-7 × 104) and its distribution. © 1992 John Wiley & Sons, Inc.  相似文献   

14.
The free-radical copolymerization of α-methylstyrene and styrene has been studied in toluene and dimethyl phthalate solutions at 60°C. Gas chromatography was used to monitor the rate of consumption of monomers. For styrene alone, the measured rate of polymerization Rp and M?n of the polymer coincided with values expected from previous studies by other workers. Solution viscosity η affected Rp and M?n of styrene homopolymers and copolymers as expected on the basis of an inverse proportionality between η1/2 and termination rate. The rate of initiation by azobisisobutyronitrile appears to be independent of monomer feed composition in this system. Molecular weights of copolymers can be accounted for by considering combinative termination only. The effects of radical chain transfer are not significant. A theory is proposed in which the rate of termination of copolymer radicals is derived statistically from an ideal free-radical polymerization model. This simple theory accounts quantitatively for Rp and M?n data reported here and for the results of other workers who have favored more complicated reaction models because of the apparent failure of simple copolymer reactivity ratios to predict polymer composition. This deficiency results from systematic losses of low molecular weight copolymer species in some analyses. Copolymer reactivity ratios derived with the assumption of a simple copolymer model and based on rates of monomer loss can be used to predict Rp values measured in other laboratories without necessity for consideration of depropagation or penultimate unit effects. The 60°C rate constants for propagation and termination in styrene homopolymerization were taken to be 176 and 2.7 × 107 mole/l.-sec, respectively. The corresponding figures for α-methylstyrene are 26 and 8.1 × 108 mole/l.-sec. These constants account for the sluggish copolymerization behavior of the latter monomer and the low molecular weights of its copolymers. The simple reaction scheme proposed here suggests that high molecular weight styrene–α-methylstyrene copolymers can be produced at reasonable rates at 60°C by emulsion polymerization. This is shown to be the case.  相似文献   

15.
Mixtures of two “monodisperse” samples of polystyrene (M1 = 4.53 × 104, M2 = 10.3 × 104; Mw/Mn < 1.01) in cyclohexane were allowed to separate into two phases at different polymer concentrations and temperatures. The compositions in the two phases were measured by gel permeation chromatography, and used to determine isothermal binodals. From the binodal data the critical temperature and concentration were estimated as functions of the composition of the polymer mixture, and the separation factor σ for each polymer component was calculated. In contrast with typical results in the literature, σ was almost independent of molecular weight of the polymer. It is shown by deriving a general expression for σ that theoretical prediction of σ requires accurate knowledge about the Flory–Huggins interaction parameter as a function of the concentrations of individual polymer components.  相似文献   

16.
A typical low‐strain monomer, cyclooctene, was polymerized via ring‐opening metathesis polymerization with electrochemically produced active species. The structural properties of the polyoctenamer were determined by NMR, gel‐permeation chromatography and differential scanning calorimetry. Analysis of the polyoctenamer microstructure by 1H and 13C NMR spectroscopy indicates that the polymer contains a highly cis stereoconfiguration of the double bonds (σc = 0.75). The resulting polymer is of low molecular weight and has a reasonably broad molecular weight distribution (Mw = 18 000, PDI = 1.9). The glass transition temperature and melting point of the polyoctenamer are ?11.3 °C and 36.5 °C respectively. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

17.
Copper-amine catalyst systems which polymerize 2-methyl-6-phenylphenol to high molecular weight polymer are described. With CuCl and N,N,N ′,N′-tetramethyl-1,3-butanediamine (TMBD), an intrinsic viscosity of 1.56 dl/g was obtained. Faster rates of polymerization resulted with a CuBr-TMBD catalyst. Catalysts from other tertiary amines and mixtures of tertiary amines also produced high polymer. Pyridine and diethylamine catalyst were less active. Samples of polymer were isolated at different stages of the polymerization. Measurements of viscosity, osmotic pressure, light scattering, gel permeation, hydroxyl groups, nitrogen content, and chemical reactivity were made on the samples. Below a molecular weight value of M?n 60,000, M?n/M?w was 2.0. At higher molecular weights, there was a broadening in molecular weight distribution. No major change in the molar concentration of the “;head” endgroups with increasing molecular weight was detected by infrared analysis. However, nitrogen analyses, chemical reactivity studies, and the M?n/M?w ratio suggested the chemical nature of the “head” end had changed. The relationships between intrinsic viscosity in chloroform at 25°C and M?n and M?w for unfractionated polymer samples are log [η] = ?4.26 + 0.84 log M?n and log [η] = ?3.86 + 0.70 log M?w.  相似文献   

18.
Two samples of cellulose (molecular weight 2.97 × 105 and 1.25 × 105) were transformed into carbanilates (CTC) which were then fractionated by the elution method at a constant composition of the acetone-water elution mixture with the column temperature gradually increasing from ?30°C to 30°C, and by the GPC method in acetone and tetrahydrofuran. Tetrahydrofuran appeared to be a more suitable solvent. The molecular weights of fractions obtained by the elution fractionation were determined by the light-scattering method in tetrahydrofuran. The width of fractions was determined by the GPC method (average M w/M n = 1.37); the [η] values and the Mark-Houwink constants (K = 5.3 × 10-3, a = 0.84) for tetrahydrofuran at 25°C were determined. The calibration curve for the GP method was constructed by means of the fractions thus obtained; it was demonstrated that the universal calibration curve according to Benoit can also be used. It was demonstrated that the molecular weight distribution of cellulose can be conveniently determined by conversion into CTC followed either by the elution fractionation (for preparative purposes) or by fractionation by the GPC method (for analytical purposes).  相似文献   

19.
The grafting of styrene onto low molecular weight polybutadienes and butadiene–styrene co-polymers was studied. A mathematical method was used for the design of experiments and for the determination of the optimum grafting conditions with respect to the conversion of styrene and the efficiency of grafting. The reaction parameters were temperature (65–105°C), time (2–10 hr), concentration of the initiator, polymer to monomer ratio (10/90–90/10) and dilution by solvent (toluene). The optimum grafting conditions were chosen under which 50–60 wt-% of styrene was grafted onto backbone polymer at a high conversion of the monomer. It was found that the reactions producing graft copolymer prevailed over the styrene homopolymerization when the temperatures employed were lower (65–85°C), and the reaction time (8–10 hr), backbone polymer/monomer ratio, and the dilution by solvent were higher. The efficiency, density, and degree of grafting were found to increase with the increase in the molecular weight of the backbone polymer. The efficiencies and densities of grafting onto low molecular weight polybutedienes were higher than those of grafting onto low molecular weight butadiene–styrene copolymers. Grafting efficiencies and grafting densities were in the ranges 37.8–61.6 wt % and 0.06–0.26, respectively, in the studied range of number-average molecular weights (M?n = 2400–6000).  相似文献   

20.
The formation and growth of monodisperse polystyrene latex particles in the absence of added surfactant has been studied by sampling polymerization reactions at different times and determining the surface and bulk properties of the latex. A large number of nuclei in excess of 5 × 1012/ml were generated during the first minute of reaction, but this fell due to coagulation until a constant number (1011?1012/ml) was reached. The rate of polymerization per particle was then found to be proportional to the particle radius. Gel-permeation chromatography has shown that the initial particles consist mainly of material of MW 1000 with a small amount of polymer up to MW 106, and the presence of this low molecular weight polymer, which in many cases can still be detected after 100% conversion, is taken as being indicative of particle formation via a micellization-type mechanism involving short-chain (MW 500) free-radical oligomers. M?n values determined for the latex particles throughout the course of reactions show that the molecular weight increases to a maximum of about 105 as the particles grow. The presence of anomalous regions within the particles has been confirmed by transmission electron microscopy, scanning electron microscopy, and gas adsorption studies. It has also been found possible to re-expose these regions within apparently homogeneous particles by stirring with styrene monomer; this is indicative of a molecular weight heterogeneity within the latex particles. The presence of sulfate, carboxyl, and hydroxyl groups upon the latex particle surfaces has been determined by conductometric titration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号