首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinetics of the graft polymerization of acrylamide initiated by ceric nitrate—dextran polymeric redox systems was studied primarily at 25°C. Following an initial period of relatively fast reaction, the rate of polymerization is first-order with respect to the concentrations of monomer and dextran and independent of the ceric ion concentration. The equilibrium constant for ceric ion—dextran complexation K is 3.0 ± 1.6 l./mole, the specific rate of dissociation of the complex, kd, is 3.0 ± 1.2 × 10?4 sec.?1, and the ratio of polymerization rate constants, kp/kt, is 0.44 ± 0.15. The number-average degree of polymerization is directly proportional to the ratio of the initial concentrations of monomer and ceric ion and increases exponentially with increasing extent of conversion. The initial rapid rate of polymerization is accounted for by the high reactivity of ceric ion with cis-glycol groups on the ends of the dextran chains. The polymerization in the slower period that follows is initiated by the breakdown of coordination complexes of ceric ions with secondary alcohols on the dextran chain and terminated by redox reaction with uncomplexed ceric ions.  相似文献   

2.
Abstract

Polymerizations of methyl methacrylate (MMA) and acrylonitrile (AN) were carried out in aqueous nitric acid at 30°C with the redox initiator system ammonium ceric nitrate-ethyl cellosolve (EC). A short induction period was observed as well as the attainment of a limiting conversion for polymerization reactions. The consumption of ceric ion was first order with respect to Ce(IV) concentration in the concentration range (0.2–0.4) × 10?2 M, and the points at higher and lower concentrations show deviations from a linear fit. The plots of the inverse of pseudo-first-order rate constant for ceric ion consumption, (k 1)?1 vs [EC]?1, gave straight lines for both the monomer systems with nonzero intercepts supporting complex formation between Ce(IV) and EC. The rate of polymerization increases regularly with [Ce(IV)] up to 0.003 M, yielding an order of 0.41, then falls to 0.0055 M and again shows a rise at 0.00645 M for MMA polymerization. For AN polymerization, R p shows a steep rise with [Ce(IV)] up to 0.001 M, and beyond this concentration R p shows a regular increase with [Ce(IV)], yielding an order of 0.48. In the presence of constant [NO? 3], MMA and AN polymerizations yield orders of 0.36 and 0.58 for [Ce(IV)] variation, respectively. The rates of polymerization increased with an increase in EC and monomer concentrations: only at a higher concentration of EC (0.5 M) was a steep fall in R p observed for both monomer systems. The orders with respect to EC and monomer for MMA polymerization were 0.19 and 1.6, respectively. The orders with respect to EC and monomer for AN polymerization were 0.2 and 1.5, respectively. A kinetic scheme involving oxidation of EC by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by biomolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

3.
The polymerization of acrylonitrile (M) initiated by the Ce(IV)–acetophenone (AP) redox pair has been studied in acetic–sulfuric acid mixtures in a nitrogen atmosphere. The rate of polymerization is proportional to [M]3/2, [AP]1/2 and [Ce(IV)]1/2. The rate of disappearance of ceric ion,–RCe, is proportional to [AP], [M], and [Ce(IV)]. The effect of certain salts, solvent, acid and temperature on both the rates have been investigated. A suitable kinetic scheme has been proposed, and the composite rate constants kp 2(k/k/t) and k0/ki are reported.  相似文献   

4.
Heterogeneous polymerization of acrylonitrile initiated by ceric ammonium sulfate–citric acid (C.A.) redox system is reported at 35 ± 0.2°C under nitrogen atmosphere. The rate of monomer disappearance is found to be proportional to [C.A.]0, [Ce4+]0.63, and [Monomer]1.59. The rate of ceric ion disappearance is directly proportional to ceric ion concentration but independent of monomer concentration. The initial rate was independent of [H2SO4]. The molecular weight of polyacrylonitrile increases with increasing monomer concentration and decreasing ceric ion concentration. Activation energy was found to be 27.9 kJ/mol.  相似文献   

5.
Polymerization of acrylamide monomer, initiated by the redox system involving acidified ceric ammonium sulfate and 2-mercaptoethanol (2-ME) was carried out in an aqueous medium at 25° C. White, rigid polyacrylamide, isolated under controlled experimental conditions, showed a molecular weight of 1.5 × 104 from viscosity measurements. The rate of monomer (M) conversion to polymer was found to be proportional to [M]1.5, [2-ME]0.5, and [Ce(IV)]0.4. Further, the rate of disappearance of ceric ion was observed to be directly proportional to [2-ME] and independent of [M] in the range of 0.16–0.48 mole/liter. The explanation of the above proportionalities is given in terms of a proposed reaction mechanism. Values of the usual rate constants, kr, k0/kt and kt./kp ½ have been computed.  相似文献   

6.
Abstract

Methyl acrylate was grafted onto dissolving pulp by ceric ion in aqueous sulfuric acid under oxygen-free argon. At a low Ce(IV) concentration (up to 1 mmol/L), the rate of polymerization (Rp ) is proportional to [Ce]0.5 [MA]1 [cellulose]1. At higher concentrations of cericion (1–20 mmol/L), Rp is proportional to [Ce]0 [M] 1.5 [cellulose]1. The mechanism of grafting is consistent with a kinetic scheme involving initiation by primary radicals and termination by growing polymer radicals. Above 20 mmol/L of ceric salt, the data are consistent with the linear termination mode.  相似文献   

7.
Polymerization of methyl methacrylate (MMA) with aliphatic primary amines and carbon tetrachloride has been investigated in th dimethylsulfoxide medium by employing a dilatometric technique at 60°C. The rate of polymerization (Rp) has been evaluated under the conditions, [CCl4]/[amine] < 1 and > 1. The kinetic data indicate possible participation of the charge transfer complexes formed between the amine + CCl4 and the amine + MMA in the polymerization of MMA. In the absence of CCl4 or amine, no polymerization of MMA was observed under the present experimental conditions. The polymerization of MMA was inhibited by hydroquinone, indicating a free radical initiation. The energy of activation varied from 32 to 58 kJ mol?1.  相似文献   

8.
The polymerization of acrylonitrile was studied in aqueous solution with ceric ammonium sulfate in the presence of triethylamine as initiator at 30, 40, and 50°C. The rate of polymerization was found to be linear with the concentration of the amine and independent of ceric ion concentration. A reaction scheme involving initial complex formation between ceric ion and the amine and subsequent disproportionation of the conplex to produce free radicals is proposed for the initiation reaction. The termination step is postulated as involving oxidation of the polymer chains by ceric ions. The results have been explained in the light of the proposed reaction scheme.  相似文献   

9.
The kinetics of oxidation of aliphatic amines viz., ethylamine, n-butylamine, isopropylamine (primary amines), diethylamine (secondary amine), and triethylamine (tertiary amine) by chloramine-T have been studied in NaOH medium catalyzed by osmium (VIII) and in perchloric acid medium with ruthenium(III) as catalyst. The order of reaction in [Chloramine-T] is always found to be unity. A zero order dependence of rate with respect to each [OH?] and [Amine] has been observed during the osmium(VIII) catalyzed oxidation of diethylamine and triethylamine while a retarding effect of [OH?] or [Amine] on the rate of oxidation is observed in case of osmium(VIII) catalyzed oxidation of primary aliphatic amines. The ruthenium(III) catalyzed oxidation of amines follow almost similar kinetics. The order of reactions in [Amine] or [Acid] decreases from unity at higher amine or acid concentrations. The rate of oxidation is proportional to {k′ and k″ [Ruthenium(III)] or [Osmium(VIII)]} where k′ and k″ (having different values in case of ruthenium(III) and osmium(VIII)) are the rate constants for uncatalyzed and catalyzed path respectively. The suitable mechanism consisting with the kinetic data is proposed in each case and discussed.  相似文献   

10.
Polymerization of acrylonitrile was investigated using ceric ion-organic sulfur compounds reducing agent systems. The organic sulphur compounds used as the reductants are, thiourea, thioacetamide, 2-amino ethanethiol, cysteine, and thioglycolic acid. The rates of polymerization were measured within the temperature range of 25 to 40 °C. The initiation was by the radical produced from Ce4+-sulphur compounds reaction. The rate of monomer disappearance was proportional to [M]1.5, [S]0.5 and the rate of ceric disappearance was directly proportional to [S] and [Ce4+]. A kinetic scheme involving the initiation by the primary radical and termination of the growing polymer radicals by the mutual type has been suggested and the kinetic percentage have been evaluated.  相似文献   

11.
Polymerization of methyl methacrylate was carried out in aqueous nitric acid in the temperature range 26–40°C, with the redox initiator system ceric ammonium nitrate–isopropyl alcohol. A short induction period was observed, as well as the attainment of a limiting conversion, and the total ceric ion consumption with reaction time. The reaction orders were 1/2 and 3/2 with respect to the IPA and monomer concentration, respectively, within the range (3–5) × 10?3M of Ce(IV). But at lower Ce(IV) concentration (≤ 1 × 10?3M), the order with respect to monomer and Ce(IV) changed to 1 and 1/2, respectively. The rate of ceric ion disappearance was first order with respect to Ce(IV) concentration and (RCe)?1 was proportional to [IPA]?1. Both the rate of polymerization and the rate of ceric ion consumption increase with rise in temperature. The average-molecular weight can be controlled by variations in IPA, Ce(IV), and monomer concentrations, and in temperature. A kinetic scheme involving oxidation of IPA by Ce(IV) via complex formation, whose decomposition gives rise to a primary radical, initiation, propagation, and termination of the polymeric radicals by bimolecular interaction is proposed. An oxidative termination of primary radicals by Ce(IV) is also included.  相似文献   

12.
The kintetic studies of polymerization of methyl methacrylate initiated with nickel ethyl acetoacetate gave the following equations. Rp=K1[Monomer]1.4[Chelate]0.5, in the absence ox aniline Rp=K2[Monomer]1.2[Chelate]0.5 [Aniline]0,5, in the presence of aniline. Some aromatic amines such as aniline markedly accelerated the polymerization, while pyridine had no such effect. The activation energy of initiation was 24.8 kcal/mol in the absence of aniline, and 8.8 kcal/mol in the presence of aniline. Both the kinetic data and the infrared spectra of the polymer indicated that the polymerization was radical in nature. The reaction order against monomer varied, as the temperature differed. The spectrophotometric investigation indicated formation of a complex between the chelate and the monomer, or amines. It also showed that the formation of a complex was not a factor which controlled the rate of initiation. A scheme of initiation mechanism was presented on the basis of the above experimental evidence.  相似文献   

13.
Radical polymerization of methacrylic acid (MAA) and acrylic acid (AA) in the presence of a positively charged macromolecular matrix was studied. In the presence of a matrix, the rates of polymerization were remarkably increased, especially in high pH region. This suggests that electrostatic interaction between the macromolecular matrix and the growing chains and/or the monomer molecules plays an important role in the process of polymerization reaction. The kinetic orders were greatly influenced by the relative matrix concentration (PC) as follows: for (PC)0 > [M]0, Rp = k[M]0.9 [PC]0.3 [I]0.8≤ [M]0 Rp = k[M]0.3[PC]0[I]0,8 where [M] and [I] are monomer and initiator concentration, respectively, and k is a constant. The mechanism of the interaction of matrix with monomer and/or growing chains in the process of the propagation is discussed. The complex formed in the matrix polymerization could be easily made into fiber by spinning.  相似文献   

14.
A study was made of the ceric ammonium nitrate (CAN) initiated graft copolymerization of methyl acrylate (MA) onto potato starch. The variables affecting the graft were investigated. The optimums have been obtained; they are the concentrations of MA, CAN, and nitric acid (HNO3) (1.08, 5.0 × 10?3, and 0.081 mol/L, respectively). The reaction temperature is ca. 50°C and the reaction time is 2 h. The molecular weight of grafted poly(methylacrylate) has been determined. On the basis of experimental results, the mechanism of grafting has been explored, a new kinetic equation of the graft copolymerization is established: Rp = Kkd [STOH] [Ce4+] + Kkpkd/kt[STOH][M], where K, kd, kp, and kt are constants. The equation fits the results of experiments. © 1993 John Wiley & Sons, Inc.  相似文献   

15.
The polymerization of di-n-butyl itaconate (DBI) intiated with AIBN was kinetically investigated in benezene. The polymerization rate (Rp) was expressed by: Rp = k[AIBN]0.5[DBI]1.7. The polymerization showed a considerably low overall activation energy of 15.3 kcal/mol. The initiator efficiency of AIBN in this system decreased with increasing DBI concentration, ranging from 0.34 to 0.55°C, which is ascribable to viscosity effect due to the monomer. From an ESR study, the polymerization system was found to involve two kinds of persistent radicals, namely, primary propagating ( III ) and propagating ( I ) radicals. The relative concentration of III to I increased with decreasing monomer concentration. Azo-nitrile initiators such as AVN and ACN similarly produced two persistent radicals, while MAIB, DBPO, and PBO yielded only propagating radical I as persistent. The MAIB-initiated polymerization of DBI was also performed in benzene. Similar kinetic features were observed, that is, a higher dependence of Rp on the DBI concentration and a low overall activation energy (14.4 kcal/mol). The following rate equation was obtained at 50°C:Rp = k[MAIB]0.5[DBI]1.6. The initiator efficiency of MAIB decreased with increasing DBI concentration, ranging from 0.32 to 0.53 at 50°C. The concentration of propagating radical I was determined by ESR at 50 and 61°C, from which kp and kt were estimated. The kp value increased with increasing monomer concentration, while the kt one decreased with the DBI concentration. These values are much lower compared with those of MMA.  相似文献   

16.
The effect of various substituted amines on the polymerization of methyl methacrylate initiated by ferric laurate—amine as the initiator system has been studied in carbon tetrachloride medium at 60°C. Amines used are n-butyl amine, di-n-butyl amine. The rate of polymerization is found to follow the order: tertiary > secondary > primary amine. From the detailed kinetic studies it was found that the overall polymerization rate can be expressed by the equation: The relative activity of the different amines has been found to be dependent on the relative electron-donating tendency of the substituents present in the amine. The mechanism of the polymerization is discussed on the basis of these results, and various kinetic constants are evaluated.  相似文献   

17.
The graft copolymerization of methyl methacrylate in S-carboxymethylated wool fibers was investigated in the aqueous LiBr-K2S2O8 system. The rate of grafting, the degree of polymerization of graft polymer, and the number of grafting sites were determined on varying the thiol content at a constant concentration of monomer. Kinetic considerations lead to the following expression in agreement with the experimental results: Z/DP = {(ktd + ktc)/kp2[M]2} Rp, where Z is the number of DNP endgroups of polymer; DP is the average degree of polymerization; kp, ktd, and ktc are the rate constants of propagation, termination by disproportionation, and termination by recombination, respectively; [M] is the concentration of monomer in fibers, and Rp is the overall rate of grafting. For wool fibers in media sufficiently high viscosity, the rate constants ktd and ktc of diffusion-controlled termination are approximately equal and not affected by the change in cross-link density, provided that the thiol and disulfide interchange occurs. The possibility of occurrence of mechanical bond scission through a radical mechanism is involved in systems with extremely small amounts of thiol groups.  相似文献   

18.
The polymerization of acrylamide (M) in aqueous sulfuric acid medium initiated with ceric ammonium sulfate–malic acid redox pair was investigated at 35 ± 0.2°C under nitrogen atmosphere. The initiation was caused by the free radical generated by the decomposition of the complex formed between ceric ion and malic acid (MA). The rate of monomer disappearance was proportional to the first power of malic acid, ceric ion, and monomer concentrations at lower ceric ion concentrations. However, at higher ceric ion concentrations the rate was independent of [Ce(IV)]. The rate of ceric ion disappearance was proportional to [MA] and [Ce(IV)] but independent of [M] at lower ceric ion concentrations. The activation energy was found to be 57.74 kJ/mol. Sulfuric acid retarded the reaction. Molecular weights increased with increasing [M] and decreasing [Ce(IV)].  相似文献   

19.
The homogeneous polymerization of 2-methacryloyloxyethyl phosphorylcholine (MPC) as betaine monomer with potassium peroxydisulfate (KPS) was kinetically investigated in water by means of FT-near IR spectroscopy. The overall activation energy of the polymerization was estimated to be 12.8 kcal/mol. The initial polymerization rate (Rp) at 40 °C was given by Rp = k[KPS]0.98[MPC]1.9. The presence of alkaline metal halides accelerated the polymerization. The larger the radius of metal cation or halide ion was, the larger the accelerating effect was. The accelerating salt effect was explained by interactions of salt ions with ionic moieties of the propagating polymer radical and/or the MPC monomer. A kinetic study was also performed on the polymerization of MPC with KPS in water in the presence of NaCl of 2.5 mol/l. Rp at 40 °C was expressed by Rp = k[KPS]0.6[MPC]1.6. A very low value of 4.7 kcal/mol was obtained as the overall activation energy of the polymerization.  相似文献   

20.
The polymerization of acrylonitrile was carried out using peroxydiphosphate-cyclohexanol redox system in the presence of silver ion. The rate of polymerization increases with increasing peroxydiphosphate concentration and the initiator exponent was computed to be 0.5. The rate of polymerization increases with increasing monomer concentration and the monomer exponent was computed to be unity. The plot of Rp vs [Ag+]1/2 was linear, indicating 0.5 order with respect to [Ag+]. The reaction was carried out at three different temperatures and the overall activation energy was calculated to be 7.60 kcal/mol. The effect of certain surfactants on the rate of polymerization has been investigated and a suitable kinetic scheme has been pictured.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号