首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 906 毫秒
1.
A2B‐type B‐methoxy subporphyrins 3 a – g and B‐phenyl subporphyrins 7 a – c , e , g bearing meso‐(2‐substituted)aryl substituents are synthesized, and their rotational dynamics are examined through variable‐temperature (VT) 1H NMR spectroscopy. In these subporphyrins, the rotation of meso‐aryl substituents is hindered by a rationally installed 2‐substituent. The rotational barriers determined are considerably smaller than those reported previously for porphyrins. Comparison of the rotation activation parameters reveals a variable contribution of ΔH and ΔS in ΔG. 2‐Methyl and 2‐ethyl groups of the meso‐aryl substituents in subporphyrins 3 e , 3 f , and 7 e induce larger rotational barriers than 2‐alkoxyl substituents. The rotational barriers of 3 g and 7 g are reduced by the presence of the 4‐dibenzylamino group owing to its ability to stabilize the coplanar rotation transition state electronically. The smaller rotational barriers found for B‐phenyl subporphyrins than for B‐methoxy subporphyrins indicate a negligible contribution of SN1‐type heterolysis in the rotation of meso‐aryl substituents.  相似文献   

2.
Eight new and eight known 2‐(2‐phenylethyl)chromone (=2‐(2‐phenylethyl)‐4H‐1‐benzopyran‐4‐one) derivatives, i.e., 1 – 8 and 9 – 16 , respectively, together with the two known sesquiterpenoids 17 and 18 were isolated from a 70% MeOH extract of Aquilaria malaccensis (AM) agarwood chips. Their structures were determined based on extensive spectroscopic analysis and comparison with reported data.  相似文献   

3.
The room‐temperature crystal structures of four new thio derivatives of N‐methylphenobarbital [systematic name: 5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trione], C13H14N2O3, are compared with the structure of the parent compound. The sulfur substituents in N‐methyl‐2‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2‐thioxo‐1,2‐dihydropyrimidine‐4,6(3H,5H)‐dione], C13H14N2O2S, N‐methyl‐4‐thiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐4‐thioxo‐3,4‐dihydropyrimidine‐2,6(1H,5H)‐dione], C13H14N2O2S, and N‐methyl‐2,4,6‐trithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenylpyrimidine‐2,4,6(1H,3H,5H)‐trithione], C13H14N2S3, preserve the heterocyclic ring puckering observed for N‐methylphenobarbital (a half‐chair conformation), whereas in N‐methyl‐2,4‐dithiophenobarbital [5‐ethyl‐1‐methyl‐5‐phenyl‐2,4‐dithioxo‐1,2,3,4‐tetrahydropyrimidine‐6(5H)‐one], C13H14N2OS2, significant flattening of the ring was detected. The number and positions of the sulfur substituents influence the packing and hydrogen‐bonding patterns of the derivatives. In the cases of the 2‐thio, 4‐thio and 2,4,6‐trithio derivatives, there is a preference for the formation of a ring motif of the R22(8) type, which is also a characteristic of N‐methylphenobarbital, whereas a C(6) chain forms in the 2,4‐dithio derivative. The preferences for hydrogen‐bond formation, which follow the sequence of acceptor position 4 > 2 > 6, confirm the differences in the nucleophilic properties of the C atoms of the heterocyclic ring and are consistent with the course of N‐methylphenobarbital thionation reactions.  相似文献   

4.
The four new sesquiterpenoids 1 – 4 , and the new 2‐(2‐phenylethyl)‐4H‐chromen‐4‐one (=2‐(2‐phenylethyl)‐4H‐1‐benzopyran‐4‐one) derivative 5 , together with the two known sesquiterpenoids 6 and 7 , the five known chromenones 8 – 12 , and 1‐hydroxy‐1,5‐diphenylpentan‐3‐one ( 13 ), were isolated from a 70% MeOH extract of Aquilaria malaccensis agarwood chips. Their structures were elucidated on the basis of comprehensive spectral analyses and comparison with literature data.  相似文献   

5.
Three related compounds containing a pyrazole moiety with vicinal phenyl rings featuring a methyl­sulfonyl substituent are described, namely 3‐methyl‐1‐[4‐(methyl­sulfonyl)­phenyl]‐5‐phenyl‐1H‐pyrazole, C17H16N2O2S, ethyl 1‐[4‐(methyl­sul­fonyl)­phenyl]‐5‐phenyl‐1H‐pyrazole‐3‐carboxyl­ate, C19H18N2O4S, and 1‐[4‐(methyl­sulfonyl)­phenyl]‐3‐[3‐(morpholino)­phenoxy­methyl]‐5‐phenyl‐1H‐pyrazole, C27H27N3O4S. The design of these compounds was based on celecoxib, a selective cyclo­oxy­genase‐2 (COX‐2) inhibitor, in order to study the influence of various substituents on COX‐2 and 5‐lipoxy­genase (5‐LOX) inhibition.  相似文献   

6.
Synthesis of Novel (Phenylalkyl)amines for the Investigation of Structure–Activity Relationships. Part 21). 4‐Thio‐Substituted [2‐(2,5‐Dimethoxyphenyl)ethyl]amines (=2,5‐Dimethoxybenzeneethanamines) The 4‐substituted [2‐(2,5‐dimethoxyphenyl)ethyl]amines (=2,5‐dimethoxybenzeneethanamines) and its α‐methyl analogs are known to act as potent 5‐HT2A/C ligands, which have, depending on their 4‐substituent, agonistic or antagonistic character. Generally, compounds with a small lipophilic substituent typically are agonists and those with a larger lipophilic substituent predominantly antagonists or at least partial agonists. Since little is known about the transition and more information is needed about the structural requirements of the 4‐substituent to control the functional activity, 12 novel 4‐thio‐substituted [2‐(2,5‐dimethoxyphenyl)ethyl]amines were synthesized and spectroscopically characterized. Thus 2,5‐dimethoxybenzenethiol ( 7 ) was converted to the thioether derivatives 8a – l with several alkyl, fluoroalkyl, alkenyl, and benzyl halides. Subsequent Vilsmeier‐formylation afforded the benzaldehydes 9a – l , condensation with MeNO2 the nitroethenyl derivatives 10a – l , and reduction with AlH3 the desired (2‐phenylethyl)amines 11a – l .  相似文献   

7.
A series of 7‐fluorinated 7‐deazapurine 2′‐deoxyribonucleosides related to 2′‐deoxyadenosine, 2′‐deoxyxanthosine, and 2′‐deoxyisoguanosine as well as intermediates 4b – 7b, 8, 9b, 10b , and 17b were synthesized. The 7‐fluoro substituent was introduced in 2,6‐dichloro‐7‐deaza‐9H‐purine ( 11a ) with Selectfluor (Scheme 1). Apart from 2,6‐dichloro‐7‐fluoro‐7‐deaza‐9H‐purine ( 11b ), the 7‐chloro compound 11c was formed as by‐product. The mixture 11b / 11c was used for the glycosylation reaction; the separation of the 7‐fluoro from the 7‐chloro compound was performed on the level of the unprotected nucleosides. Other halogen substituents were introduced with N‐halogenosuccinimides ( 11a → 11c – 11e ). Nucleobase‐anion glycosylation afforded the nucleoside intermediates 13a – 13e (Scheme 2). The 7‐fluoro‐ and the 7‐chloro‐7‐deaza‐2′‐deoxyxanthosines, 5b and 5c , respectively, were obtained from the corresponding MeO compounds 17b and 17c , or 18 (Scheme 6). The 2′‐deoxyisoguanosine derivative 4b was prepared from 2‐chloro‐7‐fluoro‐7‐deaza‐2′‐deoxyadenosine 6b via a photochemically induced nucleophilic displacement reaction (Scheme 5). The pKa values of the halogenated nucleosides were determined (Table 3). 13C‐NMR Chemical‐shift dependencies of C(7), C(5), and C(8) were related to the electronegativity of the 7‐halogen substituents (Fig. 3). In aqueous solution, 7‐halogenated 2′‐deoxyribonucleosides show an approximately 70% S population (Fig. 2 and Table 1).  相似文献   

8.
A simple and direct synthetic methodology for a novel series of azines and their annulated systems was performed. Heterocyclization of acyl isothiocyanate 2 with urea or malononitrile gave s‐triazine 4 and 1,3‐oxazine 7 derivatives, respectively. The reaction of heteroallene 1 with acetylacetone tolerated 2‐thioxopyridine derivative 9 . The latter compound underwent heterocyclization with urea, hydrazine hydrate, or phenyl hydrazine to give the annulated pyridines 10 – 12 . Pyrimidinethione 14 was resulted from reaction of acylisothiocyanate with enamine 13 . Condensation of compound 14 with hydrazine hydrate, phenyl hydrazine, urea, and 3‐nitrobenzaldehyde in the presence of ethyl cyanoacetate or sodium hydroxide afforded 15 – 20 , respectively.  相似文献   

9.
ABSTRACT

This work presents new rod-like compounds being fluorene derivatives linked with other parts of the core at 2 and 7 positions – its synthesis and properties. The fluorene moiety is located in the central position of the four rings molecular core. The chain system in most cases was symmetrical and limited to pentyl or hexyl chains. To study the influence of the lateral substituents on mesomorphic properties two types of substituents have been incorporated, centrally located various short alkyl groups at fluorene’s 9,9 positions and outer core fluorosubstitutions located at side phenyl rings. All synthesised compounds exhibit liquid crystalline properties, where for laterally non-substituted and fluorosubstituted derivatives the dominant phases are smectics, while the nematics phases (nematic and chiral nematic – observed mostly on cooling cycle) occurs for compounds having alkyl substituents at 9,9 positions of fluorene. The synthetic methodology and mesomorphic properties of title compounds will be presented in detail as well as photophysical properties such as UV-visible absorption spectra and fluorescence spectra.  相似文献   

10.
A series of m‐ and p‐substituted 1‐phenyl, 1‐benzyl, 1‐benzoyl, and 1‐(2‐phenylethyl)pyrroles was prepared and their 1H and 13C nmr spectroscopic characteristics were examined. In general, good correlations were observed between the chemical shift values of the β? H and the β? C of pyrroles [except 1‐(2‐phenylethyl)pyrroles] and the Hammettt σ. The observation may be explained in terms of the electronic effects of the substituents which are transmitted through bonds and through space by interaction of the p orbitals between β? Cs of the pyrrole ring and m‐ and p? Cs of the phenyl ring. Substituent constants of 1‐pyrrolyl, 1‐pyrrolylmethyl, and 1‐pyrroloyl groups for the 1H and 13C chemical shifts of phenyl ring are also presented.  相似文献   

11.
Reaction of 4‐phenyl‐4H‐1,2,4‐triazole‐3‐thione with ethyl bromoacetate has led to the formation of ethyl [(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)sulfanyl]acetate 1 , the structure of which was confirmed by X‐ray analysis. In the next reaction with 80% hydrazide hydrate, appropriate hydrazide 2 was obtained, which in reaction with isothiocyanates was converted to new acyl derivatives of thiosemicarbazides 2 , 3 , 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h . The cyclization of these compounds in alkaline media has led to formation of new derivatives of 5‐{[(4‐phenyl‐4H‐1,2,4‐triazole‐3‐yl)sulfanyl]methyl}‐4H‐1,2,4‐triazole‐3(2H)‐thiones 4a , 4b , 4c , 4d , 4e , 4f , 4g , 4j . The structure of the compounds was confirmed by elementary analysis and IR, 1H‐NMR, 13C‐NMR, and MS spectra. Compounds 2 , 3 , 3a , 3b , 3c , 3d , 3e , 3f , 3g , 3h and 4a , 4b , 4c , 4d , 4e , 4f , 4g were screened for their antimicrobial activities, and the influence of the compounds 4a , 4b , and 4e , 4f , 4g on the central nervous system of mice in behavioral tests was examined. J. Heterocyclic Chem., (2011).  相似文献   

12.
The phenanthridinium chromophores 5‐ethyl‐6‐phenylphenanthridinium ( 1 ), 5‐ethyl‐6‐methylphenanthridinium ( 2 ), 3,8‐diamino‐5‐ethyl‐6‐methylphenanthridinium ( 3 ), and 3,8‐diamino‐5‐ethyl‐6‐(4‐N,N‐diethylaminophenyl)phenanthridinium ( 4 ) were characterized by their optical and redox properties. All dyes were applied in titration experiments with a random‐sequence 17mer DNA duplex and their binding affinities were determined. The results were compared to well‐known ethidium bromide ( E ). In general, this set of data allows the influence of substituents in positions 3, 6, and 8 on the optical properties of E to be elucidated. Especially, compound 4 was used to compare the weak electron‐donating character of the phenyl substituent at position 6 of E with the more electron‐donating 4‐N,N‐diethylaminophenyl group. Analysis of all of the measurements revealed two pairs of chromophores. The first pair, consisting of 1 and 2 , lacks the amino groups in positions 3 and 8, and, as a result, these dyes exhibit clearly altered optical and electrochemical properties compared with E . In the presence of DNA, a significant fluorescence quenching was observed. Their binding affinity to DNA is reduced by nearly one order of magnitude. The electronic effect of the phenyl group in position 6 on this type of dye is rather small. The properties of the second set, 3 and 4 , are similar to E due to the presence of the two strongly electron‐donating amino groups in positions 3 and 8. However, in contrast to 1 and 2 , the electron‐donating character of the substituent in position 6 of 3 and 4 is critical. The binding, as well as the fluorescence enhancement, is clearly related to the electron‐donating effect of this substituent. Accordingly, compound 4 shows the strongest binding affinity and the strongest fluorescence enhancement. Quantum chemical calculations reveal a general mechanism related to the twisted intramolecular charge transfer (TICT) model. Accordingly, an increase of the twist angle between the phenyl ring in position 6 and the phenanthridinium core opens a nonradiative channel in the excited state that depends on the electron‐donating character of the phenyl group. Access to this channel is hindered upon binding to DNA.  相似文献   

13.
The starting (1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐yl)carbonohydrazonoyl dicyanide ( 2 ) was used as key intermediate for the synthesis of 3‐amino‐2‐(1,5‐dimethyl‐3‐oxo‐2‐phenyl‐2,3‐dihydro‐1H‐pyrazol‐4‐ylazo)‐[3‐substituted]‐1‐yl‐acrylonitrile derivatives ( 3 – 10 ). In addition, nitrile derivative 2 reacted with hydrazine hydrate or malononitrile to afford the corresponding 3,5‐diaminopyrazole 11 and enaminonitrile derivative 13 , respectively. On the other hand, compound 3 was subjected to react with malononitrile, acetic anhydride, triethylorthoformate, N,N‐dimethylformamide (DMF)‐dimethylacetal, thiourea, and hydroxylamine hydrchloride to afford antipyrine derivatives 16 – 21 . Moreover, the reaction of enaminonitrile 3 with carbon disulfide in pyridine afforded the pyrimidine derivative 22 , whereas, in NaOH/DMF followed by the addition of dimethyl sulphate afforded methyl carbonodithioate 24 . The reaction of enaminonitrile derivatives 3 – 5 with phenylisothiocyanate afforded the thiopyrimidine derivatives 25a – c . Finally, the enaminonitrile 4 reacted with 3‐(4‐chloro‐phenyl)‐1‐phenyl‐propenone to afford the pyridine derivative 27 . The newly synthesized compounds were characterized by elemental analyses and spectral data (IR, 13C‐NMR, 1H–NMR, and MS).  相似文献   

14.
A four‐step synthesis of 1‐substituted 5‐(2‐aminophenyl)‐1H‐pyrazoles 5 as a novel type of histamine analogs and versatile building blocks for further transformations was developed. The synthesis starts from commercially available 2‐nitroacetophenone ( 12 ), which is converted into the enamino ketone 13 as the key intermediate. Cyclization of the key intermediate 13 with monosubstituted hydrazines 14a – 14l afforded the 5‐(2‐nitrophenyl)‐1H‐pyrazoles 17a – 17l . Finally, catalytic hydrogenation of the nitro compounds 17a, 17c – 17e , and 17g – 17j furnished the title compounds 5a, 5c – 5e , and 5g – 5j , respectively, in good yields. As demonstrated by some further transformations, additional functionalization of compounds 17 and 5 is feasible, either by electrophilic substitution at C(4) of the pyrazole ring, or at the NH2 group.  相似文献   

15.
16.
The 5,5‐dimethylpyrazolidin‐3‐one ( 4 ), prepared from ethyl 3‐methylbut‐2‐enoate ( 3 ) and hydrazine hydrate, was treated with various substituted benzaldehydes 5a – i to give the corresponding (1Z)‐1‐(arylmethylidene)‐5,5‐dimethyl‐3‐oxopyrazolidin‐1‐ium‐2‐ide azomethine imines 6a – i . The 1,3‐dipolar cycloaddition reactions of azomethine imines 6a – h with dimethyl acetylenedicarboxylate (=dimethyl but‐2‐ynedioate; 7 ) afforded the corresponding dimethyl pyrazolo[1,2‐a]pyrazoledicarboxylates 8a – h , while by cycloaddition of 6 with methyl propiolate (=methyl prop‐2‐ynoate; 9 ), regioisomeric methyl pyrazolo[1,2‐a]pyrazolemonocarboxylates 10 and 11 were obtained. The regioselectivity of cycloadditions of azomethine imines 6a – i with methyl propiolate ( 9 ) was influenced by the substituents on the aryl residue. Thus, azomethine imines 6a – e derived from benzaldehydes 5a – e with a single substituent or without a substituent at the ortho‐positions in the aryl residue, led to mixtures of regioisomers 10a – e and 11a – e . Azomethine imines 6f – i derived from 2,6‐disubstituted benzaldehydes 5f – i gave single regioisomers 10f – i .  相似文献   

17.
Organoboranes carrying electron‐withdrawing substituents are commonly used as Lewis acidic catalysts or cocatalysts in a variety of organic processes. These Lewis acids also became popular through their application in `frustrated Lewis pairs', i.e. combinations of Lewis acids and bases that are unable to fully neutralize each other due to steric or electronic effects. We have determined the crystal and molecular structures of four heteroleptic arylboranes carrying 2‐(trifluoromethyl)phenyl, 2,6‐bis(trifluoromethyl)phenyl, 3,5‐bis(trifluoromethyl)phenyl or mesityl substituents. [3,5‐Bis(trifluoromethyl)phenyl]bis[2‐(trifluoromethyl)phenyl]borane, C22H11BF12, (I), crystallizes with two molecules in the asymmetric unit which show very similar geometric parameters. In one of the two molecules, both trifluoromethyl groups of the 3,5‐bis(trifluoromethyl)phenyl substituent are disordered over two positions. In [3,5‐bis(trifluoromethyl)phenyl]bis[2,6‐bis(trifluoromethyl)phenyl]borane, C24H9BF18, (II), only one of the two meta‐trifluoromethyl groups is disordered. In [2,6‐bis(trifluoromethyl)phenyl]bis[3,5‐bis(trifluoromethyl)phenyl]borane, C24H9BF18, (III), both meta‐trifluoromethyl groups of only one 3,5‐bis(trifluoromethyl)phenyl ring are disordered. [3,5‐Bis(trifluoromethyl)phenyl]dimesitylborane, C26H25BF6, (IV), carries only one meta‐trifluoromethyl‐substituted phenyl ring, with one of the two trifluoromethyl groups disordered over two positions. In addition to compounds (I)–(IV), the structure of bis[2,6‐bis(trifluoromethyl)phenyl]fluoroborane, C16H6BF13, (V), is presented. None of the ortho‐trifluoromethyl groups is disordered in any of the five compounds. In all the structures, the boron centre is in a trigonal planar coordination. Nevertheless, the bond angles around this atom vary according to the bulkiness and mutual repulsion of the substituents of the phenyl rings. Also, the ortho‐trifluoromethyl‐substituted phenyl rings usually show longer B—C bonds and tend to be tilted out of the BC3 plane by a higher degree than the phenyl rings carrying ortho H atoms. A comparison with related structures corroborates the conclusions regarding the geometric parameters of the boron centre drawn from the five structures in this paper. On the other hand, CF3 groups in meta positions do not seem to have a marked effect on the geometry involving the boron centre. Furthermore, it has been observed for the structures reported here and those reported previously that for CF3 groups in ortho positions of the aromatic ring, disorder of the F atoms is less probable than for CF3 groups in meta or para positions of the ring.  相似文献   

18.
Certain 1‐ethyl‐ and 1‐aryl‐6‐fluoro‐1,4‐dihydroquinol‐4‐one derivatives were synthesized and evaluated for antimycobacterial and cytotoxic activities. Preliminary results indicated that, for 1‐aryl‐6‐fluoroquinolones, both 7‐(piperazin‐1‐yl)‐ and 7‐(4‐methylpiperazin‐1‐yl) derivatives, 9b and 11a , are able to completely inhibit the growth of M. tuberculosis at a concentration of 6.25 μg/ml, while the 7‐[4‐(2‐oxo‐2‐phenylethyl)piperazin‐1‐yl] derivative 13 exhibits only 31% growth inhibition at the same concentration. For 1‐ethyl‐6‐fluoroquinolones, both 7‐[4‐(2‐oxopropyl)piperazin‐1‐yl]‐ and 7‐[4‐(2‐oxo‐2‐phenylethyl)piperazin‐1‐yl]‐derivatives, 2a and 2b , respectively, show complete inhibition, while their 2‐iminoethyl and substituted phenyl counterparts 3a and 2c are less active. In addition, the 6,8‐difluoro derivative was a more‐favorable inhibitor than its 6‐fluoro counterpart ( 2b vs. 2d ). These results deserve full attention especially because 2a, 2b, 9b , and 11a are non‐cytotoxic at a concentration of 100 μM . Furthermore, compound 9b proved to be a potent anti‐TB agent with selective index (SI)>40 and an EC90 value of 5.75 μg/ml.  相似文献   

19.
Several new benzo[ij]pyrano[2,3‐b]quinolizine‐8‐ones 5 and 4H‐pyrano[2,3‐b]pyridine 8 derivatives were synthesized from 4‐hydroxyquinolines 1 . Reacting 3‐acetyl‐4‐hydroxy‐1‐phenyl‐1H‐quinoline‐2‐one with dimethylformamide dimethylacetal afforded 3‐(3‐Dimethylarnino‐acryloyl)‐4‐hydroxy‐1‐phenyl‐1H‐quinolin‐2‐one 9 . This reacted with hippuric acid and diethyl 3‐oxoglutarate to give 2H‐pyran‐2‐one 13 and pyranopyridoquinoline 17 respectively.  相似文献   

20.
Synthesis of {3‐[1‐(ethoxycarbonyl)‐[1,2,4]triazolo[4,3‐a]quinoxalin‐4‐yl]‐1‐phenyl‐1H‐pyrazol‐5‐yl}methyl ethyl oxalate ( 2 ), ethyl 4‐[5‐(acetoxymethyl)‐1‐phenyl‐1H‐pyrazol‐3‐yl]‐[1,2,4]triazolo[4,3‐a]quioxaline‐1‐carboxylate ( 4 ), [4‐halo‐1‐phenyl‐3‐(1‐phenyl‐[1,2,4]triazolo[4,3‐a]quioxalin‐4‐yl)‐1H‐pyrazol‐5‐yl]methyl acetate ( 11 ), {4‐halo‐3‐[1‐methyl‐[1,2,4]triazolo[4,3‐a]quinoxalin‐4‐yl]‐1‐phenyl‐1H‐pyraz‐ol‐5‐yl}methyl acetate ( 13 ), and [3‐([1,2,4]triazolo‐[4,3‐a]quinoxalin‐4‐yl)‐4‐halo‐1‐phenyl‐1H‐pyrazol‐5‐yl] methyl formate ( 15 ) was accomplished. The structural investigation of the new compounds is based on chemical and spectroscopic evidences. J. Heterocyclic Chem., (2011)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号