首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A variety of 4‐substituted quinolin‐2(1H)‐ones were prepared and evaluated for N‐methyl‐D‐aspar‐tate (NMDA) receptor binding site activity and their abilities to inhibit neurotoxicity. The 4‐(2‐car‐bethoxyethanamino)‐7‐chloro‐3‐nitroquinolin‐2(1H)‐one ( 9b ) exhibited favorable NMDA receptor binding site activity and 7‐chloro‐4‐(benzylamino)‐3‐nitroquinolin‐2(1H)‐one ( 9c ) showed the most potent neurotoxicity among them. The synthetic strategies involve the use of well known keto ester condensation and reductive ring cyclization of intermediates ( 2a‐d ) to afford 4‐substituted quinolin‐2(1H)‐ones.  相似文献   

2.
In continuation of our search for potent antiplatelet agents, we have synthesized and evaluated several α‐methylidene‐γ‐butyrolactones bearing 3,4‐dihydroquinolin‐2(1H)‐one moieties. O‐Alkylation of 3,4‐dihydro‐8‐hydroxyquinolin‐2(1H)‐one ( 1 ) with chloroacetone under basic conditions afforded 3,4‐dihydro‐8‐(2‐oxopropoxy)quinolin‐2(1H)‐one ( 2a ) and tricyclic 2,3,6,7‐tetrahydro‐3‐hydroxy‐3‐methyl‐5H‐pyrido[1,2,3‐de][1,4]benzoxazin‐5‐one ( 3a ) in a ratio of 1 : 2.84. Their Reformatsky‐type condensation with ethyl 2‐(bromomethyl)prop‐2‐enoate furnished 3,4‐dihydro‐8‐[(2,3,4,5‐tetrahydro‐2‐methyl‐4‐methylidene‐5‐oxofuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 4a ), which shows antiplatelet activity, in 70% yield. Its 2′‐Ph derivatives, and 6‐ and 7‐substituted analogs were also obtained from the corresponding 3,4‐dihydroquinolin‐2(1H)‐ones via alkylation and the Reformatsky‐type condensation. Of these compounds, 3,4‐dihydro‐7‐[(2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxo‐2‐phenylfuran‐2‐yl)methoxy]quinolin‐2(1H)‐one ( 10b ) was the most active against arachidonic acid (AA) induced platelet aggregation with an IC50 of 0.23 μM . For the inhibition of platelet‐activating factor (PAF) induced aggregation, 6‐{[2‐(4‐fluorophenyl)‐2,3,4,5‐tetrahydro‐4‐methylidene‐5‐oxofuran‐2‐yl]methoxy}‐3,4‐dihydroquinolin‐2(1H)‐one ( 9c ) was the most potent with an IC50 value of 1.83 μM .  相似文献   

3.
In this study, methyl 2‐(quinolin‐8‐yloxy) acetate ( 2 ) obtained by reaction of 8‐hydroxyquinoline ( 1 ) with methyl chloroacetate was condensed with hydrazine hydrate to afford the carbohydrazide ( 3 ). Thio/semicarbazide derivatives ( 4a , 4b , 4c , 4d , 4e , 4f , 4g ) were obtained by treatment of the 3 with substituted phenyl iso/thioisocyanates. The 4a , 4b , 4c , 4d , 4e , 4f , 4g on acidic and basic intramolecular cyclization led to N‐(aryl)‐5‐((quinolin‐8‐yloxy)methyl)‐1,3,4‐oxa/thiadiazol‐2‐amines ( 5a , 5b , 5c , 5d , 5e , 5f , 5g ) and 4‐aryl‐5‐((quinolin‐8‐yloxy)methyl)‐2H‐1,2,4‐triazole‐3(4H)‐thiones ( 6a , 6b , 6c , 6d , 6e , 6f , 6g ), respectively. All the synthesized compounds were characterized by spectroscopic techniques and elemental analyses. The thiosemicarbazide ( 4c ) was also confirmed by X‐ray crystallography.  相似文献   

4.
The reaction of 3‐N‐(2‐mercapto‐4‐oxo‐4H‐quinazolin‐3‐yl)acetamide ( 1 ) with hydrazine hydrate yielded 3‐amino‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 2 ). The reaction of 2 with o‐chlorobenzaldehyde and 2‐hydroxy‐naphthaldehyde gave the corresponding 3‐arylidene amino derivatives 3 and 4 , respectively. Condensation of 2 with 1‐nitroso‐2‐naphthol afforded the corresponding 3‐(2‐hydroxy‐naphthalen‐1‐yl‐diazenyl)‐2‐methyl‐3H‐[1,2,4]triazolo[5,1‐b]quinazolin‐9‐one ( 5 ), which on subsequent reduction by SnCl2 and HCl gave the hydrazino derivative 6. Reaction of 2 with phenyl isothiocyanate in refluxing ethanol yielded thiourea derivative 7. Ring closure of 7 subsequently cyclized on refluxing with phencyl bromide, oxalyl dichloride and chloroacetic acid afforded the corresponding thiazolidine derivatives 8, 9 and 10 , respectively. Reaction of 2‐mercapto‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 11 ) with hydrazine hydrate afforded 2‐hydrazino‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 12 ). The reactivity 12 towards carbon disulphide, acetyl acetone and ethyl acetoacetate gave 13, 14 and 15 , respectively. Condensation of 12 with isatin afforded 2‐[N‐(2‐oxo‐1,2‐dihydroindol‐3‐ylidene)hydrazino]‐3‐phenylamino‐3H‐quinazolin‐4‐one ( 16 ). 2‐(4‐Oxo‐3‐phenylamino‐3,4‐dihydroquinazolin‐2‐ylamino)isoindole‐1,3‐dione ( 17 ) was synthesized by the reaction of 12 with phthalic anhydride. All isolated products were confirmed by their ir, 1H nmr, 13C nmr and mass spectra.  相似文献   

5.
The 2,3‐dihydro‐7‐methyl‐1H,5H‐pyrido[3,2,1‐ij]quinoline‐1,5‐dione derivatives 9 and 10 were prepared from 3‐(5,7‐dimethoxy‐4‐methyl‐2‐oxo‐2H‐quinolin‐1‐yl)propionitrile ( 6 ). Cyclodehydration of the amide 8 gave 1,2‐dihydro‐7,9‐dimethoxy‐6‐methylpyimido[1,2‐a]quinolin‐3‐one ( 11 ).  相似文献   

6.
An efficient synthesis of novel 2‐aryl‐3‐(phenylamino)‐2,3‐dihydroquinazolin‐4(1H)‐one derivatives using KAl(SO4)2.12H2O (Alum) as a catalyst from an aldehyde and 2‐amino‐N‐phenylbenzohydrazine in ethanol is described. All synthesized derivatives were screened for anti‐bacterial activity. Some compounds exhibited promising anti‐bacterial activity with reference to standard antibiotics.  相似文献   

7.
The synthesis of ketanserin ( 5 ) and its hydrochloride salt ( 5.HCl ) using respectively equimolar amounts of 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) with 4‐(parafluorobenzoyl)piperidine ( 3 ) and dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) with hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) is reinvestigated. The one‐pot reaction of ethyl‐2‐aminobenzoate with ethyl chloroformate and ethanol amine has afforded 3‐(2‐chloroethyl)‐2,4‐(1H,3H)‐quinazolinedione ( 2 ) (86%) that was then refluxed with 4‐(parafluorobenzoyl)piperidine ( 3 ) in ethyl methyl ketone in the presence of sodium carbonate to obtain free base of ketanserin (87%). In another attempt, a very pure hydrochloride salt of ketanserin ( 5.HCl ) was synthesized using equimolar amounts of dihydro‐5H‐oxazole(2,3‐b)quinazolin‐5‐one ( 1 ) and hydrochloride salt of 4‐(parafluorobenzoyl)piperidine ( 3.HCl ) by a solvent‐less fusion method. Thus, under optimized conditions, 180°C and a reaction time of 30 min, the powder mixture was transformed into glassy crystals that were initially readily soluble in chloroform but were transformed afterwards over time (2 h) to white precipitates ( 5.HCl ) suspended in chloroform with a yield of 72%.  相似文献   

8.
The one‐pot, three‐component, synthesis of a new series of 4‐hydroxy‐3‐(2‐arylimidazo[1,2‐a]pyridin‐3‐yl)quinolin‐2(1H)‐ones in the presence of DABCO as a catalyst has been achieved using aryl glyoxal monohydrates, quinoline‐2,4(1H,3H)‐dione, and 2‐aminopyridine in H2O/EtOH under reflux conditions. The cheapness of organocatalyst, simple workup, operational simplicity, regioselectivity, and high yields are some advantages of this protocol.  相似文献   

9.
Novel α‐(acyloxy)‐α‐(quinolin‐4‐yl)acetamides were synthesized by the Passerini three‐component reaction between an isocyanide, quinoline‐4‐carbaldehyde, and arenecarboxylic acids in H2O. The reactions were carried out in one pot at room temperature with quantitative yields.  相似文献   

10.
In order to find new antimalarial drugs, an exploration about the chemical properties of the starting compounds 3‐amino‐6‐chloro‐4‐phenyl‐1H‐quinolin‐2‐one ( 1 ) and 3‐amino‐4‐methyl‐1H‐quinolin‐2‐one ( 2 ) was developed. Acylation with acyl chloride, sulfonyl chloride and acetic anhydride were carried out. Despite a previous report [2], when acetyl chloride or acetic anhydride were assayed on 1 , only the diacetyl derivative 7 was obtained. When this compound was heated at reflux temperature in a mixture of acetic acid and acetic anhydride, it was transformed in the oxazoloquinoline 8 . Further reactions of the acyl derivatives with diazomethane afforded 1‐methylated compounds. Compound 2 gave the imine 16 by condensation with 4‐nitrobenzaldehyde.  相似文献   

11.
A series of novel 3‐((4‐(t‐butyl)‐2‐(2‐benzylidenehydrazinyl)thiazol‐5‐yl)methyl)quinolin‐2(1H)‐ones ( 7a – 7z ) were designed, synthesized and evaluated for their ability of inhibiting neuraminidase (NA) of in?uenza H1N1 virus. Some compounds displayed moderate influenza NA inhibitory activity. Compound 7l with the scaffold of 2‐(2‐(2‐methoxybenzylidene)hydrazinyl)thiazole was the best one, exhibiting moderate NA inhibitory activity with IC50 of 44.66 µmol/L. Structure‐activity relationship showed that compounds with methoxy or hydroxy groups at the ortho position, fluorine and nitro groups at the meta position and chlorine and bromine groups at the para position of phenyl ring were more active. Docking study indicated that compound 7l has important interactions with some key residues (including Asp151, Glu119, Arg292, Tyr406, and Asn347) and binds to 430‐cavity adjacent to NA active site.  相似文献   

12.
A series of novel 3‐(phenyl)‐2‐(3‐substituted propylthio) quinazolin‐4‐(3H)‐ones were synthesized by the reaction of 2‐(3‐bromopropylthio)‐3‐(phenyl) quinazolin‐4‐(3H)‐one with various amines. The starting material, 2‐(3‐bromopropylthio)‐3‐(phenyl) quinazolin‐4‐(3H)‐one was synthesized from aniline. When tested for their in vivo H1‐antihistaminic activity on conscious guinea pigs, all the test compounds protected the animals from histamine‐induced bronchospasm significantly. Compound 2‐(3‐(4‐methylpiperazin‐1‐yl) propylthiothio)‐3‐(phenyl) quinazolin‐4(3H)‐one ( Ph5 ) emerged as the most active compound (73.23% protection) of the series when compared with the reference standard chlorpheniramine maleate (70.09% protection). Compound Ph5 shows negligible sedation (5.01 %) compared with chlorpheniramine maleate (29.58%). Therefore, compound Ph5 can serve as the leading molecule for further development into a new class of H1‐antihistaminic agents.  相似文献   

13.
An easy, highly efficient and a new convenient one‐pot, two‐step approach to the synthesis of 3‐(3‐benzyl‐2‐(phenylimino)‐2,3‐dihydrothiazol‐4‐yl)‐6‐methyl‐4‐(2‐oxo‐2‐phenylethoxy)‐3,4‐dihydro‐2H‐pyran‐2‐one is described. These compounds were synthesized from 3‐(3‐benzyl‐2‐(phenylimino)‐2,3‐dihydrothiazol‐4‐yl)‐4‐hydroxy‐6‐methyl‐3,4‐dihydro‐2H‐pyran‐2‐one and α‐bromoketones in good yields. The compounds 4 were synthesized by a multi‐component reaction between 1 , 2 , and 3 and the prominent features of this protocol are mild reaction conditions, operation simplicity, and good to high yields of products.  相似文献   

14.
In the context of our aim of discovering new antitumor drugs among synthetic γ‐lactone‐ and γ‐lactam‐fused 1‐methylquinolin‐4(1H)‐ones, we developed a rapid access to 5‐methyl‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinoline‐8,9(5H,6H)‐dione ( 9 ) exploiting the γ‐lactone‐fused chloroquinoline 10 previously synthesized in our laboratory (Scheme 1). We also elaborated efficient synthetic methods allowing for a rapid access to two nonclassical bioisosteres of 9 , i.e., a deoxy and a carba analogue. The deoxy analogue 11 was prepared in two steps from the γ‐lactone‐fused quinoline 13 which was also the synthetic precursor of 10 (Scheme 1). The carba analogue 6,9‐dihydro‐5‐methyl‐9‐methylene‐1,3‐dioxolo[4,5‐g]furo[3,4‐b]quinolin‐8(5H)‐one ( 12 ) was easily prepared by HCl elimination from the 9‐(chloromethyl)dioxolofuroquinoline 15 , which was obtained via a three‐component one‐pot reaction from N‐methyl‐3,4‐(methylenedioxy)aniline (=N‐methyl‐1,3‐benzodioxol‐5‐amine; 16 ), commercially available chloroacetaldehyde, and tetronic acid ( 17 ) (Scheme 2).  相似文献   

15.
A series of substituted N‐(4‐substituted‐benzoyl)‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 13 ) and N‐arylsulfonyl‐N‐[3‐(1‐methyl‐1H‐imidazol‐2‐yl)propyl]amines ( 14 ) were prepared from the reaction of 3‐(1‐methyl‐1H‐imidazol‐2‐yl)propan‐1‐amine ( 7 ) with substituted benzoyl chloride or substituted‐benzene sulfonyl chloride respectively. Compound 7 was prepared by two independent methods.  相似文献   

16.
4‐Hydroxy‐1H‐quinolin‐2‐ones ( 1 ) react with thiocyanogen in acetic acid to the corresponding 3‐thiocyanato‐1H,3H‐quinoline‐2,4‐diones ( 2 ) in good yields. In some cases, 3‐bromo‐1H,3H‐quinoline‐2,4‐diones ( 4 ) were isolated as minor reaction products. Compounds 2 are very reactive towards nucleophiles and easily hydrolyze to the corresponding 4‐hydroxy‐1H‐quinoline‐2‐ones ( 1 ).  相似文献   

17.
An efficient approach for the synthesis of 2,6‐dimethyl‐1,3‐diarylpyrano[4,3‐b]pyrrol‐4(1H)‐one derivatives has been established. The reaction was performed in aqueous media using readily available and inexpensive 6‐methyl‐4‐(phenylamino)‐2H‐pyran‐2‐one and nitroolefin as substrates. The present methodology shows many attractive advantages, such as using water as green reaction media, inexpensive and environmentally friendly acetic acid as catalyst, easy work‐up procedure, and good to excellent yields.  相似文献   

18.
The reaction of anthranilonitriles 8 with phenyl isoselenocyanates ( 1a ) in dry pyridine under reflux gave 4‐(phenylamino)quinazoline‐2(1H)‐selones 9 (Scheme 2). They are easily oxidized and converted to diselenides of type 11 . The analogous reaction of 8a with phenyl isothiocyanate ( 1b ) yielded the quinazoline‐2(1H)‐thione 10 (Scheme 2). A reaction mechanism via a Dimroth rearrangement of the primarily formed intermediate is presented in Scheme 3. The molecular structures of 10 and 11a have been established by X‐ray crystallography. Unexpectedly, no selone or diselenide was obtained in the case of the reaction with 3‐aminobenzo[b]furan‐2‐carbonitrile ( 14 ). The only product isolated was the selenide 16 (Scheme 4), the structure of which has been established by X‐ray crystallography.  相似文献   

19.
A facile and efficient Cu(I)‐catalyzed azide–alkyne cycloaddition reaction for the synthesis of a series of 3‐triazolyl‐2(1H)‐quinolones 3 have been developed using 3‐azido‐quinolin‐2(1H)‐one as the coupling partner. The optimized reaction conditions involve the use of eco‐ friendly ethanol as the solvent in the presence of copper(I) thiophene‐2‐carboxylate as the catalyst, to afford good to excellent yields of 3‐triazolyl‐2(1H)‐quinolone derivatives of biological interest. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
A series of novel 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles was synthesized in three steps from 5‐(1‐methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones. 5‐(1‐Methyl‐1H‐indazol‐3‐yl)‐4‐phenyl‐2H‐1,2,4‐triazole‐3(4H)‐thiones were converted into 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles upon methylation followed by treatment with aq. KMnO4. The reaction of 1‐methyl‐3‐(5‐(methylsulfonyl)‐4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles with Raney nickel resulted in desulphonylation to afford corresponding 1‐methyl‐3‐(4‐phenyl‐4H‐1,2,4‐triazol‐3‐yl)‐1H‐indazoles. All the new synthesized compounds were characterized by spectral techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号