首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 797 毫秒
1.
We discuss how the annihilation luminosity of a neutrino-cooled accretion disk in a gamma-ray burst, Lν ν, is determined by the disk’s fundamental parameters, namely, the mass of the central black hole M, the mass accretion rate M, and the viscosity parameter α. It is shown that Lν ν depends mainly on M in evidence, and decreases with increasing M, but is almost independent of α. This result argues additionally that the central black hole in a gamma-ray burst must be with a stellar mass.  相似文献   

2.
For weakly non ergodic systems, the probability density function of a time average observable is where is the value of the observable when the system is in state j=1,…L. p j eq is the probability that a member of an ensemble of systems occupies state j in equilibrium. For a particle undergoing a fractional diffusion process in a binding force field, with thermal detailed balance conditions, p j eq is Boltzmann’s canonical probability. Within the unbiased sub-diffusive continuous time random walk model, the exponent 0<α<1 is the anomalous diffusion exponent 〈x 2〉∼t α found for free boundary conditions. When α→1 ergodic statistical mechanics is recovered . We briefly discuss possible physical applications in single particle experiments.  相似文献   

3.
We present a model unifying general relativity and quantum mechanics. The model is based on the (noncommutative) algebra on the groupoid Γ=E×G where E is the total space of the frame bundle over spacetime, and G the Lorentz group. The differential geometry, based on derivations of , is constructed. The eigenvalue equation for the Einstein operator plays the role of the generalized Einstein’s equation. The algebra , when suitably represented in a bundle of Hilbert spaces, is a von Neumann algebra ℳ of random operators representing the quantum sector of the model. The Tomita–Takesaki theorem allows us to define the dynamics of random operators which depends on the state φ. The same state defines the noncommutative probability measure (in the sense of Voiculescu’s free probability theory). Moreover, the state φ satisfies the Kubo–Martin–Schwinger (KMS) condition, and can be interpreted as describing a generalized equilibrium state. By suitably averaging elements of the algebra , one recovers the standard geometry of spacetime. We show that any act of measurement, performed at a given spacetime point, makes the model to collapse to the standard quantum mechanics (on the group G). As an example we compute the noncommutative version of the closed Friedman world model. Generalized eigenvalues of the Einstein operator produce the correct components of the energy-momentum tensor. Dynamics of random operators does not “feel” singularities.  相似文献   

4.
In this paper, by using well-known Eddington–Finkelstein coordinates instead of Painlevè coordinates, we study the tunneling effect of black holes. As examples of special static black holes, we calculate the tunneling rates of Gibbon–Maeda black holes. The result obtained by adopting Eddington–Finkelstein coordinates is in agreement with the Parikh’s standard result, Γ∼exp (−2Im S), which adopts the Painlevè coordinates. In addition, we discuss carefully the condition that the coordinates system in which we study the tunneling process should satisfy. In our opinion, the terms of the tunneling effect are not as strict as ones in Parikh’s paper and could be softened properly.  相似文献   

5.
In this paper, an error in the proof of Theorem 4.9 in Gudder’s paper (Int. J. Theor. Phys. 47(1):268–279, 2008) is pointed out and it is proved that if such that E i ∈ℂI∖{0} and E j I for some i,j in {1,2,…,n}, then . This subject is supported by the NNSF of China (No. 10571113, 10871224).  相似文献   

6.
A Hermitian and an anti-Hermitian first-order intertwining operators are introduced and a class of η-weak-pseudo-Hermitian position-dependent mass (PDM) Hamiltonians are constructed. A corresponding reference-target η-weak-pseudo-Hermitian PDM—Hamiltonians’ map is suggested. Some η-weak-pseudo-Hermitian -symmetric Scarf II and periodic-type models are used as illustrative examples. Energy-levels crossing and flown-away states phenomena are reported for the resulting Scarf II spectrum. Some of the corresponding η-weak-pseudo-Hermitian Scarf II- and periodic-type-isospectral models ( -symmetric and non- -symmetric) are given as products of the reference-target map.  相似文献   

7.
D-transport is employed to construct, within the limited setting of a non-graded manifold, a geometrical framework that yields a generalisation of the ‘supergauge’ transformations of Supergravity. Killing’s equation is shown to be at the origin of the ‘gauged’ supersymmetry transformations. The presence of a field-dependent Lorentz transformation is traced to the fact that, for every given X, the difference of two D-differentiation operators and is a linear transformation that necessarily depends on X.   相似文献   

8.
The understanding of possible role played by the inner horizon of black holes in black hole thermodynamics is still somewhat incomplete. By adopting Damour-Ruffini method and the thin film model which is developed on the base of brick wall model suggested by ’t Hooft, we calculate the temperature and the entropy of the inner horizon of a R-N black hole. We conclude that the temperature of inner horizon is positive and the entropy of the inner horizon is proportional to the area of the inner horizon. In addition, the cut-off factor is 90β, which is same in calculation of the entropy of the outer horizon. So, we prove the existence of thermal characters of the inner horizon. Then, we discuss that if the contribution of the inner horizon is taken into account to the total entropy of the black hole, the Nernst theorem can be satisfied. At last, we study the tunneling effect including the inner horizon of the Reissner-Nordstrom black hole. We calculate the tunneling rate of the outer horizon Γ+ and the inner horizon Γ. The total tunneling rate Γ should be the product of the rates of the outer and inner horizon, Γ=Γ+⋅Γ. We find that the total tunneling rate is in agreement with the Parikh’s standard result, Γ→exp (ΔS BH ), and there is no information loss.  相似文献   

9.
Non-Hermitian but -symmetrized spherically-separable Dirac and Schr?dinger Hamiltonians are considered. It is observed that the descendant Hamiltonians H r , H θ , and H φ play essential roles and offer some “user-feriendly” options as to which one (or ones) of them is (or are) non-Hermitian. Considering a -symmetrized H φ , we have shown that the conventional Dirac (relativistic) and Schr?dinger (non-relativistic) energy eigenvalues are recoverable. We have also witnessed an unavoidable change in the azimuthal part of the general wavefunction. Moreover, setting a possible interaction V(θ)≠0 in the descendant Hamiltonian H θ would manifest a change in the angular θ-dependent part of the general solution too. Whilst some -symmetrized H φ Hamiltonians are considered, a recipe to keep the regular magnetic quantum number m, as defined in the regular traditional Hermitian settings, is suggested. Hamiltonians possess properties similar to the -symmetric ones (here the non-Hermitian -symmetric Hamiltonians) are nicknamed as pseudo- -symmetric.  相似文献   

10.
We study the evolution of Lee-Yang zeros structure of generalized multiplicity distribution (GMD) in high energy collision. Starting our study with electron-positron e + e scattering data, we extend the study by Chan and Chew (Z. Phys. C 55:503, 1992) on TASSO and AMY multiplicity data for , 22, 34.8, 43.6 and 57 GeV to the ones from DELPHI and OPAL Collaboration for , 133, 161, 172, 183 and 189 GeV. We compare the results with the Lee-Yang structure for proton-antiproton at , 546 and 900 GeV from UA5 Collaboration. Our preliminary result shows that there is indeed a change in the shape and size of the Lee-Yang zeros with increasing energy, accompanied by the development of the so-called “ear”-like structure in the Lee-Yang plot. We expect that the development of this “ear”-like structure is related to the “shoulder” structure in the multiplicity data, which further indicates an ongoing phase transition from soft to semihard scattering. We also extend our prediction to LHC’s  TeV. Insert your abstract here.  相似文献   

11.
The simplest possible equation for Hawking radiation and other black hole radiated power is derived in terms of black hole density, ρ . Black hole density also leads to the simplest possible model of a gas of elementary constituents confined inside a gravitational bottle of Schwarzchild radius at tremendous pressure, which yields identically the same functional dependence as the traditional black hole entropy S bh∝ (kAc 3)/ℏ G. Variations of S bh can be obtained which depend on the occupancy of phase space cells. A relation is derived between the constituent momenta and the black hole radius R H, p = which is similar tothe Compton wavelength relation.  相似文献   

12.
In this paper we consider a quark moving in D=5, supergravity thermal plasma. By using the three charges non-extremal black hole solution (STU solution) we calculate the drag force on the quark and the diffusion constant from the AdS/CFT correspondence.  相似文献   

13.
We study the chiral transformation properties of all possible local (non-derivative) interpolating field operators for baryons consisting of three quarks with two flavors, assuming good isospin symmetry. We derive and use the relations/identities among the baryon operators with identical quantum numbers that follow from the combined color, Dirac and isospin Fierz transformations. These relations reduce the number of independent baryon operators with any given spin and isospin. The Fierz identities also effectively restrict the allowed baryon chiral multiplets. It turns out that the non-derivative baryons’ chiral multiplets have the same dimensionality as their Lorentz representations. For the two independent nucleon operators the only permissible chiral multiplet is the fundamental one, . For the Δ, admissible Lorentz representations are and . In the case of the chiral multiplet, the Δ field has one chiral partner; otherwise it has none. We also consider the Abelian (U A(1)) chiral transformation properties of the fields and show that each baryon comes in two varieties: (1) with Abelian axial charge +3; and (2) with Abelian axial charge −1. In case of the nucleon these are the two Ioffe fields; in case of the Δ, the multiplet has an Abelian axial charge −1 and the multiplet has an Abelian axial charge +3.  相似文献   

14.
In this paper, we study the thermal properties of the inner horizon of a Kerr-Newman black hole. By adopting Damour-Ruffini method and the thin film model which is developed on the base of brick wall model suggested by ’t Hooft, we calculate the temperature and the entropy of the inner horizon of a Kerr-Newman black hole. We conclude that the temperature of inner horizon is positive and the entropy of the inner horizon is proportional to the area of the inner horizon. The cut-off factor is same as it in calculation of the entropy of the outer horizon, 90β. In addition, we write the integral and differential Bekenstein-Smarr formula as the parameters of the inner horizon. Then, we discuss that if the contribution of the inner horizon is taken into account to the total entropy of the black hole, the Nernst theorem can be satisfied. At last, We calculate the tunneling rate of the outer horizon Γ+ and the inner horizon Γ. The total tunneling rate Γ should be the product of the rates of the outer and inner horizon, Γ=Γ+⋅Γ. We find that the total tunneling rate is in agreement with the Parikh’s standard result, Γ→exp (ΔS BH ), and there is no information loss.  相似文献   

15.
Let μ 0 be a probability measure on ℝ3 representing an initial velocity distribution for the spatially homogeneous Boltzmann equation for pseudo Maxwellian molecules. As long as the initial energy is finite, the solution μ t will tend to a Maxwellian limit. We show here that if , then instead, all of the mass “explodes to infinity” at a rate governed by the tail behavior of μ 0. Specifically, for L0, define
Let B R denote the centered ball of radius R. Then for every R,
The explicit rate is estimated in terms of the rate of divergence of η L . For example, if η L ≥Const.L s , some s>0, is bounded by a multiple of e −[κ3s/(10+9s)]t , where κ is the absolute value of the spectral gap in the linearized collision operator. Note that in this case, letting B t denote the ball of radius e rt for any r<κ s/(10+9s), we still have . This result shows in particular that the necessary and sufficient condition for lim  t→∞ μ t to exist is that the initial data have finite energy. While the “explosion” of the mass towards infinity in the case of infinite energy may seem to be intuitively clear, there seems not to have been any proof, even without the rate information that our proof provides, apart from an analogous result, due to the authors, concerning the Kac equation. A class of infinite energy eternal solutions of the Boltzmann equation have been studied recently by Bobylev and Cercignani. Our rate information is shown here to provide a limit on the tails of such eternal solutions. E. Carlen’s work is partially supported by U.S. National Science Foundation grant DMS 06-00037. E. Gabetta’s and E. Regazzini’s work is partially supported by Cofin 2004 “Probleme matematici delle teorie cinetiche” (MIUR).  相似文献   

16.
Let be the spectrum of in L 2(ℝ), where q is an even almost-periodic complex-valued function with bounded primitive and derivative. It is known that , where is the spectrum of the unperturbed operator. Suppose that the asymptotic approximation to the first asymptotic correction is given. We prove the formula that recovers the frequencies and the Fourier coefficients of q in terms of Δμ n .   相似文献   

17.
The effect of the built-in supersymmetric quantum mechanical language on the spectrum of the (1+1)-Dirac equation, with position-dependent mass (PDM) and complexified Lorentz scalar interactions, is re-emphasized. The signature of the “quasi-parity” on the Dirac particles’ spectra is also studied. A Dirac particle with PDM and complexified scalar interactions of the form S(z)=S(xib) (an inversely linear plus linear, leading to a symmetric oscillator model), and S(x)=S r (x)+iS i (x) (a -symmetric Scarf II model) are considered. Moreover, a first-order intertwining differential operator and an η-weak-pseudo-Hermiticity generator are presented and a complexified -symmetric periodic-type model is used as an illustrative example.  相似文献   

18.
We calculate the important next-to-leading-order (NLO) contributions to the BKK * decays from the vertex corrections, the quark loops, and the magnetic penguins in the perturbative QCD (pQCD) factorization approach. The pQCD predictions for the CP-averaged branching ratios are , , and Br(B 0K + K *−+K K *+)≈1.3×10−7, which agree well with both the experimental upper limits and the predictions based on the QCD factorization approach. Furthermore, the CP violating asymmetries of the considered decay modes are also evaluated. The NLO pQCD predictions for and decays are and .  相似文献   

19.
An unparticle with scaling dimension has peculiar thermal properties due to its unique phase space structure. We find that the equation of state parameter , the ratio of pressure to energy density, is given by providing a new form of energy in our universe. In an expanding universe, the unparticle energy density evolves dramatically differently from that for photons. For , even if at a high decoupling temperature T D is very small, it is possible to have a large relic density at present photon temperature T γ 0, large enough to play the role of dark matter. We calculate T D and using photon–unparticle interactions for illustration.  相似文献   

20.
In Talagrand (J. Stat. Phys. 126(4–5):837–894, 2007) the large deviations limit for the moments of the partition function Z N in the Sherrington-Kirkpatrick model (Sherrington and Kirkpatrick in Phys. Rev. Lett. 35:1792–1796, 1972) was computed for all real a≥0. For a≥1 this result extends the classical physicist’s replica method that corresponds to integer values of a. We give a new proof for a≥1 in the case of the pure p-spin SK model that provides a strong exponential control of the overlap. This work is partially supported by NSF grant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号