首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 41 毫秒
1.
This paper detailedly studies the transmission probability, the spin polarization and the conductance of the ballistic electron in a nanostrueture with the periodic magnetic-electric barriers These observable quantities are found to be strongly dependent not only on the magnetic configuration, the incident electron energy and the incident wave vector, but also on the number of the periodic magnetic-electric barriers The transmission coefficient and the spin polarization show a periodic pattern with the increase of the separation between two adjacent magnetic fields, and the resonance splitting increases as the number of periods increases. Surprisingly, it is found that a polarization can be achieved by spin-dependent resonant tunnelling in this structure, although the average magnetic field of the structure is zero.  相似文献   

2.
Using the transfer matrix method, the transmission probability, the spin polarization and the electron conductance of a ballistic electron are studied in detail in a nanostructure. We observe that these quantities sensitively depend on the number of periodic magnetic-electric barriers. As the number of periods increases, the resonance splitting increases, the number of the resonance peaks increases and the peaks become sharper as well as the spin polarization being enhanced. Surprisingly, a polarization of nearly 100% can be achieved by spin-dependent resonant tunneling in this structure, although the average magnetic field of the structure is zero.  相似文献   

3.
In this letter, the transmission probability and the conductance of the ballistic electron are studied in a nanostructure with the periodic magnetic-electric barriers. We find that the resonant splitting increases with the number of periods increasing, so the number of the resonant peaks increases and the peaks become sharper. For the m-th periodic magnetic-electric barriers tunneling the splitting is (m-1)-fold.  相似文献   

4.
通过采用转移矩阵方法求解自旋电子隧穿过程,理论研究了半导体超晶格系统中电子自旋输运的磁电调控行为.结果表明:仅对超晶格系统施以磁调制,隧穿系数将出现自旋分裂,随磁场增强,电导自旋极化率变大且展宽于费米能区;若选取不变磁场情况,同时施以间隔周期电场调制,超晶格的电子极化率将有更为显著地提高.进一步发现,随电场强度的改变,电子自旋输运行为显然存在两个明显不同区域,下自旋电子将在不同调制区域表现为不同的变化趋势.然而,若对周期磁超晶格施加间隔两周期的电调制,自旋电导输运的临界行为消失,电导极化率在高能区的共振峰 关键词: 半导体超晶格 自旋输运 磁电调控  相似文献   

5.
We study theoretically transport properties of two-dimensional electron gases through antiparallel magnetic-electric barrier structures. Two kinds of magnetic barrier configurations are employed: one is that the strength of the double δ-function in opposite directions is equal and the other is that the strength is unequal. Similarities and differences of electronic transports are presented. It is found that the transmission and the conductance depend strongly on the shape of the magnetic barrier and the height of the electric barrier. The results indicate that this system does not possess any spin filtering and spin polarization and electron gases can realize perfect resonant tunneling and wave-vector filtering properties. Moreover, the strength of the effect of the inhomogeneous magnetic field on the transport properties is discussed.  相似文献   

6.
Based on the transfer-matrix method, we theoretically investigate the spin-dependent transport properties in magnetic silicene superlattice in the presence of extrinsic Rashba spin–orbit interaction (RSOI). It is found that the spin transmission probability and spin conductivities can be efficiently controlled by the number of magnetic barriers. As the number of magnetic barriers increases, spin conductivities strongly decrease, and reduce to zero in the large on-site potential difference between A and B sublattices (Δz) region. The results indicate that a magnetic silicene superlattice exhibits a remarkable wavevector-dependent spin filtering effect. Also, the magnetoresistance (MR) ratio exhibits an oscillatory behavior with the Fermi energy. The MR ratio can be tuned by the Fermi energy, number of magnetic barriers and extrinsic RSOI. Specifically, in the presence of magnetic field the spin polarization can be observed, and increases by increasing the magnetic field.  相似文献   

7.
The spin‐dependent transport properties, including spin polarization and spin‐flip for phosphorene superlattice in the presence of an extrinsic Rashba spin‐orbit interaction (RSOI) based on the transfer matrix method, are studied. The results show that the number of barriers in the superlattice structure plays a dominant role in output spin polarization, which can be used in designing optimized spintronic devices. In addition, by controlling on the Rashba strength, an incident spin‐up electron can be transmitted as a spin‐down electron. Also, it enables to convert the unpolarized incident electronic beam (with zero spin polarization) into an arbitrary output spin polarization, which plays a significant role in qubit circuits.  相似文献   

8.
Based on the transfer-matrix method, we have investigated the spin-dependent transport properties of magnetic graphene superlattice in the presence of Rashba spin-orbit interaction (RSOI). It is shown that the angular range of the spin transmission probability through magnetic graphene superlattice can be efficiently controlled by the number of barriers. As the number of magnetic barriers increases, the angular range of the transmission through the magnetic superlattice decreases, the gaps in the transmission and conductivity versus energy become wider. It is also found that the spin conductivities oscillate with the Fermi energy and RSOI strength. Specifically, when a magnetic field is present, the spin polarisation can be observed, whereas for the RSOI alone it is zero. Application of such a phenomenon to design a spin polarised electron device based on the graphene material is anticipated.  相似文献   

9.
We study the electronic structure and transport for Dirac electron on the surface of a three-dimensional (3D) topological insulator attached to an electromagnetic superlattice. It is found that, by means of the transfer-matrix method, the number of electronic tunneling channels for magnetic barriers in antiparallel alignment is larger than that in parallel alignment, which stems to the energy band structures. Interestingly, a remarkable semiconducting transport behavior appears in this system with a strong magnetic barrier due to low energy band nearly paralleling to the Fermi level. Consequently, there is only small incident angle transport in the higher energy region when the system is modulated mainly by the higher electric barriers. We further find that the spatial distribution of the spin polarization oscillates periodically in the incoming region, but it is almost in-plane with a fixed direction in the transmitting region. The results may provide a further understanding of the nature of 3D TI surface states, and may be useful in the design of topological insulator-based electronic devices such as collimating electron beam.  相似文献   

10.
We investigate theoretically the edge channel transport in a HgTe waveguide modulated bytwo magnetic barriers. For an electron incident from a quantum-spin-Hall state in leads,the transmission can depend strongly on the relative orientation (parallel orantiparallel) of the two magnetic barriers as its energy is near the bulk conduction bandof leads. For the antiparallel configuration, the transmission is spin-independent and canbe suppressed drastically. For the parallel configuration, the electron can transmitnearly perfectly for a proper spin orientation. This contrast in transmission indicatesthat the proposed edge-state device may serve as a magnetic switch and a spin filter.  相似文献   

11.
Spin-dependent transport of relativistic electrons through graphene based double barrier (well) structures with ferromagnetic electrodes have been theoretically investigated. Electron transmission with different spin states is strongly influenced by the incident wave vector, the height (depth) of the barrier and the separation between them. When the angle of the incident electrons is varied from zero to ±π/2, spin polarization varies from zero to 100% with characteristic oscillations that indicate spin anisotropy. Due to Klein tunnelling, spin-polarization is always zero for normal incident electrons; high spin-polarization only occurs at large incident angles. Because the resonance features in the spin-dependent transmission result from resonant electron states in wells or hole states in barriers, the conductance can reach e2/h in this resonant-tunnelling structure.  相似文献   

12.
Electron transport properties of a triple-terminal Aharonov-Bohm interferometer are theoretically studied. By applying a Rashba spin-orbit coupling to a quantum dot locally, we find that remarkable spin polarization comes about in the electron transport process with tuning the structure parameters, i.e., the magnetic flux or quantum dot levels. When the quantum dot levels are aligned with the Fermi level, there only appear spin polarization in this structure by the presence of an appropriate magnetic flux. However,in absence of magnetic flux spin polarization and spin separation can be simultaneously realized with the adjustment of quantum dot levels, namely, an incident electron from one terminal can select a specific terminal to depart from the quantum dots according to its spin state.  相似文献   

13.
A theoretical model is presented in this paper for degree of spin polarization in a light emitting diode (LED) whose epitaxial region contains quantum dots doped with magnetic impurity. The model is then used to investigate the effect of electron–phonon interaction on degree of spin polarization at different temperatures and magnetic fields. It is found that magnetic impurity increases the degree of spin polarization irrespective of temperature, while the electron–phonon interaction decreases the degree of spin polarization. Results are found to be in better agreement with experiments.  相似文献   

14.
建立了有限对一维铁磁性和非磁性层交错组成的周期系统, 应用布洛赫自旋波量子理论, 研究了该系统的基本性质及电子波函数散射特征对交错层数量依赖的关系. 研究发现: 在系统中电子波函数可表示为无限周期系统中转换矩阵特征向量的叠加或类布洛赫函数, 解此函数可得到任意层数系统的单色波散射的精确解. 在此基础上, 导出了电子波函数在周期系统中反射系数和透射系数对能量的依赖关系. 对光谱窗口的计算发现其势能和宽度几乎与全反射区域一样. 该系统由于高能量的传输和在电子自旋方向上对交换能的依赖而可能用于自旋滤波器. 关键词: 磁性多层膜 铁磁性和非磁性结构 电子散射 电子自旋滤波器  相似文献   

15.
We investigate the electron transport and conductance properties in Fibonacci quasi-periodic graphene superlattices with electrostatic barriers and magnetic vector potentials.It is found that a new Dirac point appears in the band structure of graphene superlattice and the position of the Dirac point is exactly located at the energy corresponding to the zero-averaged wave number.The magnetic and electric potentials modify the energy band structure and transmission spectrum in entirely diverse ways.In addition,the angular-dependent transmission is blocked by the potential barriers at certain incident angles due to the appearance of the evanescent states.The effects of lattice constants and different potentials on angular-averaged conductance are also discussed.  相似文献   

16.
We propose in theory a curved nanowire structure that can both serve as a spin inverter and a spin polarizer driven by a periodic Rashba spin–orbit coupling (SOC) and a uniform Dresselhaus SOC. The curved section of the U-shaped quasi-one dimensional nanowire with an arc of radius R and circumferential length πR is divided into segments of equal length initially having only its inherent homogeneous Dresselhaus SOC. Then a Rashba-type SOC is applied at every alternating segment. By tuning the Rashba SOC strength and the incident electron energy, this device can flip the spin at the output of an incoming spin-polarized electron. On the other hand, this same device acts as a spin filter for an unpolarized input for which an outgoing electron with a non-zero polarization can be achieved without the application of an external magnetic field. Moreover, the potential modulation caused by the periodic Rashba SOC enables this device to function as an attenuator for a certain range of incident electron energies that can make the probability current density drop to 10−4 of its otherwise magnitude in other regimes.  相似文献   

17.
Quantum electrodynamical density functional theory is applied to obtain the electronic density, spin polarization, as well as orbital and spin magnetizations of square periodic arrays of quantum dots or antidots subjected to the influence of a far-infrared cavity photon field. A gradient-based exchange-correlation functional adapted to a 2D electron gas in a transverse homogeneous magnetic field is used in the theoretical framework and calculations. The obtained results predict a non-trivial effect of the cavity field on the electron distribution in the unit cell of the superlattice, as well as on the orbital and spin magnetizations. The number of electrons per unit cell of the superlattice is shown to play a crucial role in the modification of the magnetization via the electron–photon coupling. The calculations show that cavity photons strengthen the diamagnetic effect in the quantum dot structure, while they weaken the paramagnetic effect in the antidot structure. As the number of electrons per unit cell of the lattice increases, the electron–photon interaction reduces the exchange forces that will otherwise promote strong spin splitting for both the dot and the antidot arrays.  相似文献   

18.
We theoretically investigate the electron transport in a periodic non-magnetic heterostructure with both Dresselhaus and Rashba spin-orbit effects. We show that the transport properties obviously depend on the number of periods and the large spin polarization can be achieved in such a structure. We also show that for m>1, the resonance splitting occurs in the transmission curves of both spin-up and spin-down electrons when the transmission curves are plotted as a function of the electron energy or the well width.  相似文献   

19.
磁台阶势垒结构中二维电子气的自旋极化输运   总被引:1,自引:0,他引:1       下载免费PDF全文
运用散射矩阵方法,研究了台阶磁势垒量子结构中二维电子气的隧穿输运性质.结果表明:在零偏压下,电子传输概率的自旋极化曲线随入射能量的增加而振荡衰减;随着磁台阶数的增加,电子传输概率的自旋极化度最大值减小,同时电子传输概率的自旋极化度振荡衰减也越来越慢;随着磁台阶的总宽度增加,电子传输概率的自旋极化曲线出现更明显的振荡,电子隧穿磁台阶势垒表现出明显的量子尺寸效应;在偏置电压的作用下,电子传输概率的自旋极化度在宽广的入射能量区出现明显的振荡增大,电子隧穿磁台阶势垒表现出更明显的自旋过滤效应. 关键词: 磁台阶势垒 自旋极化 自旋过滤  相似文献   

20.
Using the transfer matrix method, we investigate the electron transmission over multiple-well semiconductor superlattices with Dresselhaus spin-orbit coupling in the potential-well regions. The superlattice structure enhances the effect of spin polarization in the transmission spectrum. The minibands of multiple-well superlattices for electrons with different spin can be completely separated at the low incident energy, leading to the 100% spin polarization in a broad energy windows, which may be an effective scheme for realizing spin filtering. Moreover, for the transmission over n-quantum-well, it is observed that the resonance peaks in the minibands split into n-folds or (n−1)-folds depending on the well-width and barrier-thickness, which is different from the case of tunneling through n-barrier structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号