首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 44 毫秒
1.
The paper deals with the homogenization of stiff heterogeneous plates. Assuming that the coefficients are equi-bounded in L 1, we prove that the limit of a sequence of plate equations remains a plate equation which involves a strongly local linear operator acting on the second gradients. This compactness result is based on a div-curl lemma for fourth-order equations. On the other hand, using an intermediate stream function we deduce from the plates case a similar result for high-viscosity Stokes equations in dimension two, so that the nature of the Stokes equation is preserved in the homogenization process. Finally, we show that the L 1-boundedness assumption cannot be relaxed. Indeed, in the case of the Stokes equation the concentration of one very rigid strip on a line induces the appearance of second gradient terms in the limit problem, which violates the compactness result obtained under the L 1-boundedness condition.  相似文献   

2.
We consider bending of thin plates with polygonal and curvilinear edges and indicate analogies and differences between the boundary conditions and boundary value problems arising in these two cases if the polygon is inscribed in the curvilinear contour and the number k of vertices of the polygon tends to infinity.We believe that the so-called Sapondzhyan paradox that arises when solving the boundary value problems for supported plates with a curvilinear contour and a k-gonal contour inscribed in it as k → ∞ can be called a paradox only by misunderstanding. Sapondzhyan’s paradox was studied in several papers briefly surveyed in the monograph [1]. Apparently, the interpretation of “paradoxes” and the results proposed in the present paper are published for the first time.Sapondzhyan’s paradox can be generalized to the case of bending of the so-called sliding-fixed plates (i.e., the generalized shear force and the rotation angle are zero on the plate contour) with a curvilinear contour and a k-gonal contour inscribed in it as k → ∞.In the case of three-dimensional elasticity problems, we present boundary conditions and boundary value problems similar to those listed above and consider the situations resulting in “paradoxes” similar to those arising in plate bending. We give the corresponding explanations and interpretations.  相似文献   

3.
We consider the stress-strain state of a plate having a doubly connected domain S bounded from the outside by a circle of radius R and from the inside by an ellipse with two rectilinear cuts. The cuts lie symmetrically on the x-axis. The plate is subjected to various forces: the hole contour (the ellipse) is under the action of uniformly distributed forces of intensity q, and the cut shores are free of loads; at the points ±ib of the imaginary axis, the plate is under the action of a lumped force P.The solution of the problem is reduced to determining two analytic functions φ(z) and ψ(z) satisfying certain boundary conditions (depending on the type of the acting loads).We use the Kolosov-Muskhelishvili method to reduce the problem to a system of linear algebraic equations for the coefficients in the expansions of the functions φ(z) and ψ(z). The solution thus obtained is illustrated by numerical examples.  相似文献   

4.
In the present paper, we use the conformal mapping z/c = ζ?2a sin ζ (a, c?const, ζ = u + iv) of the strip {|v| ≤ v 0, |u| < ∞} onto the domain D, which is a strip with symmetric periodic cuts. For the domain D, in the orthogonal system of isometric coordinates u, v, we solve the plane elasticity problem. We seek the biharmonic function in the form F = C ψ 0 + S ψ*0 + x(C ψ 1 ? S ψ 2) + y(C ψ 2 + S ψ 1), where C(v) and S(v) are the operator functions described in [1] and ψ 0(u), …, ψ 2(u) are the desired functions. The boundary conditions for the function F posed for v = ±v 0 are equivalent to two operator equations for ψ 1(u) and ψ 2(u) and to two ordinary differential equations of first order for ψ 0(u) and ψ*0(u) [2]. By finding the functions ψ j (u) in the form of trigonometric series with indeterminate coefficients and by solving the operator equations, we obtain infinite systems of linear equations for the unknown coefficients. We present an efficient method for solving these systems, which is based on studying stable recursive relations. In the present paper, we give an example of analysis of a specific strip (a = 1/4, v 0 = 1) loaded on the boundary v = v 0 by a normal load of intensity p. We find the particular solutions corresponding to the extension of the strip by the longitudinal force X and to the transverse and pure bending of the strip due to the transverse force Y and the constant moment M , respectively. We also present the graphs of normal and tangential stresses in the transverse cross-section x = 0 and study the stress concentration effect near the cut bottom.  相似文献   

5.
We study motions of a rigid body (a satellite) about the center of mass in a central Newtonian gravitational field in a circular orbit. There is a known particular motion of the satellite in which one of its principal central axes of inertia is perpendicular to the orbit plane and the satellite itself exhibits plane pendulum-like oscillations about this axis. Under the assumption that the satellite principal central moments of inertia A, B, and C satisfy the relation B = A + C corresponding to the case of a thin plate, we perform rigorous nonlinear analysis of the orbital stability of this motion.In the plane of the problem parameters, namely, the oscillation amplitude ε and the inertial parameter, there exist countably many domains of orbital stability of the satellite oscillations in the linear approximation. Nonlinear orbital stability analysis was carried out in thirteen of these domains. Isoenergetic reduction of the system of equations of the perturbed motion is performed at the energy level corresponding to the unperturbed periodic motion. Further, using the algorithm developed in [1], we construct the symplectic mapping generated by the equations of the reduced system, normalize it, and analyze the stability. We consider resonance and nonresonance cases. For small values of the oscillation amplitude, we perform analytic investigations; for arbitrary values of ε, numerical analysis is used.Earlier, numerical analysis of stability of plane pendulum-like motions of a satellite in a circular orbit was performed in several special cases in [1–4].  相似文献   

6.
Gradient systems with wiggly energies of the form
$$
and A:? d →? wereproposed by Abeyaratne, Chu &; James [2] to study the kinetics of martensitic phase transitions. Their model may be recast in the framework of the theory of averaging as a dynamical system on ? d ×? d , with the slow variable x∈? d and fast variable θ∈? d . However, this problem lies completely outside the classical theory of averaging, since the vertical flow on ? d is not ergodic for sets of positive measure, and we must interpret averages to mean weak limits.
We obtain rigorous averaging results for d= 2. We use Schwartz's generalization of the Poincaré-Bendixson theorem [37] to heuristically derive homogenized equations for the weak limits. These equations depend on the ω-limit sets for the vertical flow on fibres. When the vertical flow is structurally stable, we use the persistence of hyperbolic structures to prove that these are the correct equations. We combine these theorems with a study of two-parameter bifurcations of flows on ?2 to characterize the weak limits. Our results may be interpreted as follows. The space ?2 breaks into: (˙1) a bounded open set surrounding {?F ?1 (0)} where there is only sticking, (˙2) a transition region outside this set, where the dynamics is a combination of sticking and slipping, and (˙3) the rest of the plane, which contains a countable number of resonance zones, with nonempty interior, and their nowhere dense complement. Inside a resonance zone the direction of the weak limits is given by the rotation number ρ∈?. The Cantor set structure of the resonance zones is described by well-known results of Arnol'd [7] and Herman [27] in the theory of circle diffeomorphisms. Consequently, the homogenized equations vary on all scales. We also study the linear transport equation associated with the wiggly gradient flow, and show that its homogenization limit is not well posed.Smyshlyaev has studied this problem independently, and some of our results are similar [39].  相似文献   

7.
The long-time asymptotics is analyzed for all finite energy solutions to a model\(\mathbf{U}(1)\)-invariant nonlinear Klein–Gordon equation in one dimension, with the nonlinearity concentrated at a single point: each finite energy solution converges as t→ ± ∞ to the set of all “nonlinear eigenfunctions” of the form ψ(x)e?iω t. The global attraction is caused by the nonlinear energy transfer from lower harmonics to the continuous spectrum and subsequent dispersive radiation.We justify this mechanism by the following novel strategy based on inflation of spectrum by the nonlinearity. We show that any omega-limit trajectory has the time spectrum in the spectral gap [ ? m,m] and satisfies the original equation. This equation implies the key spectral inclusion for spectrum of the nonlinear term. Then the application of the Titchmarsh convolution theorem reduces the spectrum of each omega-limit trajectory to a single harmonic \(\omega\in[-m,m]\).The research is inspired by Bohr’s postulate on quantum transitions and Schrödinger’s identification of the quantum stationary states to the nonlinear eigenfunctions of the coupled\(\mathbf{U}(1)\)-invariant Maxwell–Schrödinger and Maxwell–Dirac equations.  相似文献   

8.
We prove a principle of linearized stability for semiflows generated by neutral functional differential equations of the form x′(t) = g(? x t , x t ). The state space is a closed subset in a manifold of C 2-functions. Applications include equations with state-dependent delay, as for example x′(t) = a x′(t + d(x(t))) + f (x(t + r(x(t)))) with \({a\in\mathbb{R}, d:\mathbb{R}\to(-h,0), f:\mathbb{R}\to\mathbb{R}, r:\mathbb{R}\to[-h,0]}\).  相似文献   

9.
We study effective elastic behavior of the incompatibly prestrained thin plates, where the prestrain is independent of thickness and uniform through the plate’s thickness h. We model such plates as three-dimensional elastic bodies with a prescribed pointwise stress-free state characterized by a Riemannian metric G, and seek the limiting behavior as \({h \to 0}\). We first establish that when the energy per volume scales as the second power of h, the resulting \({\Gamma}\) -limit is a Kirchhoff-type bending theory. We then show the somewhat surprising result that there exist non-immersible metrics G for whom the infimum energy (per volume) scales smaller than h2. This implies that the minimizing sequence of deformations carries nontrivial residual three-dimensional energy but it has zero bending energy as seen from the limit Kirchhoff theory perspective. Another implication is that other asymptotic scenarios are valid in appropriate smaller scaling regimes of energy. We characterize the metrics G with the above property, showing that the zero bending energy in the Kirchhoff limit occurs if and only if the Riemann curvatures R1213, R1223 and R1212 of G vanish identically. We illustrate our findings with examples; of particular interest is an example where \({G_{2 \times 2}}\), the two-dimensional restriction of G, is flat but the plate still exhibits the energy scaling of the Föppl–von Kármán type. Finally, we apply these results to a model of nematic glass, including a characterization of the condition when the metric is immersible, for \({G = Id_{3} + \gamma n \otimes n}\) given in terms of the inhomogeneous unit director field distribution \({ n \in \mathbb{R}^3}\).  相似文献   

10.
In this paper, we consider periodic soft inclusions T ε with periodicity ε, where the solution, u ε , satisfies semi-linear elliptic equations of non-divergence in \({\Omega_{\epsilon}=\Omega\setminus \overline{T}_\epsilon}\) with Neumann data on \({\partial T^{\mathfrak a}}\). The difficulty lies in the non-divergence structure of the operator where the standard energy method, which is based on the divergence theorem, cannot be applied. The main object is to develop a viscosity method to find the homogenized equation satisfied by the limit of u ε , referred to as u, as ε approaches to zero. We introduce the concept of a compatibility condition between the equation and the Neumann condition on the boundary for the existence of uniformly bounded periodic first correctors. The concept of a second corrector is then developed to show that the limit, u, is the viscosity solution of a homogenized equation.  相似文献   

11.
The analysis of the group properties and the search for self-similar solutions in problems of mathematical physics and continuum mechanics have always been of interest, both theoretical and applied [1–3]. Self-similar solutions of parabolic problems that depend only on a variable of the type η = x/√t are classical fundamental solutions of the one-dimensional linear and nonlinear heat conduction equations describing numerous physical phenomena with initial discontinuities on the boundary [4]. In this study, the term “generalized vortex diffusion” is introduced in order to unify the different processes in mechanics modeled by these problems. Here, vortex layer diffusion and vortex filament diffusion in a Newtonian fluid [5] can serve as classical hydrodynamic examples. The cases of self-similarity with respect to the variable η are classified for fairly general kinematics of the processes, physical nonlinearities of the medium, and types of boundary conditions at the discontinuity points. The general initial and boundary value problem thus formulated is analyzed in detail for Newtonian and non-Newtonian power-law fluids and a medium similar in behavior to a rigid-ideally plastic body. New self-similar solutions for the shear stress are derived.  相似文献   

12.
In the slow flows of a strongly and nonuniformly heated gas, in the continuum regime (Kn → 0) thermal stresses may be present. The theory of slow nonisothermal continuum gas flows with account for thermal stresses was developed in 1969–1974. The action of the thermal stresses on the gas results in certain paradoxical effects, including the reversal of the direction of the force exerted on a spherical particle in Stokes flow. The propulsion force effect is manifested at large but finite temperature differences between the particle and the gas. This study is devoted to the thermal-stress effect on the drag of a strongly heated spherical particle traveling slowly in a gas for small Knudsen numbers (M ~ Kn → 0), small but finite Reynolds numbers (Re ≤ 1), a linear temperature dependence of the transport coefficients µ ∝ T, and large but finite temperature differences ((T w ? T )/T M8 ~ 1). Two different systems of equations are solved numerically: the simplified Navier-Stokes equations and the modified Navier-Stokes equations with account for the thermal stresses.  相似文献   

13.
The problem of a transversely isotropic functionally graded material (FGM) plate welded with a circular inclusion is considered. The analysis starts with the generalized England-Spencer plate theory for transversely isotropic FGM plates, which expresses a three-dimensional (3D) general solution in terms of four analytic functions. Several analytical solutions are then obtained for an infinite FGM plate welded with a circular inclusion and subjected to the loads at infinity. Three different cases are considered, i.e., a rigid circular inclusion fixed in the space, a rigid circular inclusion rotating about the x-, y-, and z-axes, and an elastic circular inclusion with different material constants from the plate itself. The static responses of the plate and/or the inclusion are investigated through numerical examples.  相似文献   

14.
The existing theories of finite-time stability depend on a prescribed bound on initial disturbances and a prescribed threshold for allowable responses. It remains a challenge to identify the critical value of loading parameter for finite time instability observed in experiments without the need of specifying any prescribed threshold for allowable responses. Based on an energy balance analysis of a simple dynamic system, this paper proposes a general criterion for finite time stability which indicates that finite time stability of a linear dynamic system with constant coefficients during a given time interval [0, t f ] is guaranteed provided the product of its maximum growth rate (determined by the maximum eigen-root p1 >0) and the duration t f does not exceed 2, i.e., p1t f <2. The proposed criterion (p1t f =2) is applied to several problems of impacted buckling of elastic columns: (i) an elastic column impacted by a striking mass, (ii) longitudinal impact of an elastic column on a rigid wall, and (iii) an elastic column compressed at a constant speed (“Hoff problem”), in which the time-varying axial force is replaced approximately by its average value over the time duration. Comparison of critical parameters predicted by the proposed criterion with available experimental and simulation data shows that the proposed criterion is in robust reasonable agreement with the known data, which suggests that the proposed simple criterion (p1t f =2) can be used to estimate critical parameters for finite time stability of dynamic systems governed by linear equations with constant coefficients.  相似文献   

15.
Any classical solution of the two-dimensional incompressible Euler equation is global in time. However, it remains an outstanding open problem whether classical solutions of the surface quasi-geostrophic (SQG) equation preserve their regularity for all time. This paper studies solutions of a family of active scalar equations in which each component u j of the velocity field u is determined by the scalar θ through \({u_j =\mathcal{R}\Lambda^{-1}P(\Lambda) \theta}\) , where \({\mathcal{R}}\) is a Riesz transform and Λ = (?Δ)1/2. The two-dimensional Euler vorticity equation corresponds to the special case P(Λ) = I while the SQG equation corresponds to the case P(Λ) = Λ. We develop tools to bound \({\|\nabla u||_{L^\infty}}\) for a general class of operators P and establish the global regularity for the Loglog-Euler equation for which P(Λ) = (log(I + log(I ? Δ))) γ with 0 ≦ γ ≦ 1. In addition, a regularity criterion for the model corresponding to P(Λ) = Λ β with 0 ≦ β ≦ 1 is also obtained.  相似文献   

16.
The results of an experimental and numerical investigation of flow and heat transfer in the region of the interaction between an incident oblique shock and turbulent boundary layers on sharp and blunt plates are presented for the Mach numbers M = 5 and 6 and the Reynolds numbers ReL = 27×106 and 14×106. The plate bluntness and the incident shock position were varied. It is shown that the maximum Stanton number St m in the shock incidence zone decreases with increase in the plate bluntness radius r to a certain value and then varies only slightly with further increase in r. In the case of a turbulent undisturbed boundary layer heat transfer is diminished with increase in r more slowly than in the case of a laminar undisturbed flow. In the presence of an incident shock the bluntness of the leading edge of the flat plate results in a greater decrease in the Stanton number than in the absence of the shock. With increase in the bluntness of the leading edge of the plate the separation zone first sharply lengthens and then decreases in size or remains constant.  相似文献   

17.
We consider various forms of equations of motion and heat influx for deformable solids as well as various forms of Hooke’s law and Fourier’s heat conduction law under the nonclassical parametrization [1–5] of the domain occupied by a thin solid, where the transverse coordinate ranges in the interval [0, 1]. We write out several characteristics inherent in this parametrization. We use the above-mentioned equations and laws to derive the corresponding equations and laws, as well as statements of problems, for thin bodies in moments with respect to Chebyshev polynomials of the second kind. Here the interval [0, 1] is used as the orthogonality interval for the systems of Chebyshev polynomials. For this interval, we write out the basic recursion relations and, in turn, use them to obtain several additional recursion relations, which play an important role in constructing other versions of the theory of thin solids. In particular, we use the recursion relations to obtain the moments of the first and second derivatives of a scalar function, of rank one and two tensors and their components, and of some differential operators of these variables. Moreover, we give the statements of coupled and uncoupled dynamic problems in moments of the (r, N)th approximation in moment thermomechanics of thin deformable solids. We also state the nonstable temperature problem in moments of the (r, N)th approximation.  相似文献   

18.
In this paper, the well-established two-dimensional mathematical model for linear pyroelectric materials is employed to investigate the reflection of waves at the boundary between a vacuum and an elastic, transversely isotropic, pyroelectric material. A comparative study between the solutions of (a) classical thermoelasticity, (b) Cattaneo–Lord–Shulman theory and (c) Green–Lindsay theory equations, characterised by none, one and two relaxation times, respectively, is presented. Suitable boundary conditions are considered in order to determine the reflection coefficients when incident elasto–electro–thermal waves impinge the free interface. It is established that, in the quasi-electrostatic approximation, three different classes of waves: (1) two principally elastic waves, namely a quasi-longitudinal Primary (qP) wave and a quasi-transverse Secondary (qS) wave; and (2) a mainly thermal (qT) wave. The observed electrical effects are, on the other hand, a direct consequence of mechanical and thermal phenomena due to pyroelectric coupling. The computed reflection coefficients of plane qP waves are found to depend upon the angle of incidence, the elastic, electric and thermal parameters of the medium, as well as the thermal relaxation times. The special cases of normal and grazing incidence are also derived and discussed. Finally, the reflection coefficients are computed for cadmium selenide observing the influence of (1) the anisotropy of the material, (2) the electrical potential and (3) temperature variations and (4) the thermal relaxation times on the reflection coefficients.  相似文献   

19.
We derive the new effective governing equations for linear elastic composites subject to a body force that admits a Helmholtz decomposition into inhomogeneous scalar and vector potentials. We assume that the microscale, representing the distance between the inclusions (or fibers) in the composite, and its size (the macroscale) are well separated. We decouple spatial variations and assume microscale periodicity of every field. Microscale variations of the potentials induce a locally unbounded body force. The problem is homogenizable, as the results, obtained via the asymptotic homogenization technique, read as a well-defined linear elastic model for composites subject to a regular effective body force. The latter comprises both macroscale variations of the potentials, and nonstandard contributions which are to be computed solving a well-posed elastic cell problem which is solely driven by microscale variations of the potentials. We compare our approach with an existing model for locally unbounded forces and provide a simplified formulation of the model which serves as a starting point for its numerical implementation. Our formulation is relevant to the study of active composites, such as electrosensitive and magnetosensitive elastomers.  相似文献   

20.
Impact of wall slip on the yield stress measurement is examined for capillary suspensions consisting of cocoa powder as the dispersed phase, vegetable oil as the continuous primary fluid, and water as the secondary fluid using smooth and serrated parallel plates. Using dynamic oscillatory measurements, we investigated the yielding behavior of this ternary solid-fluid-fluid system with varying particle volume fraction, ?, from 0.45 to 0.65 and varying water volume fraction, ?w, from 0.02 to 0.08. Yield stress is defined as the maximum in the elastic stress (Gγ), which is obtained by plotting the product of elastic modulus (G) and strain amplitude (γ) as a function of applied strain amplitude. With serrated plates, which offer minimal slippage, capillary suspensions with ? ≥?0.45 and a fixed ?w =?0.06 showed a two-step yielding behavior as indicated by two peaks in the plots of elastic stress as a function of strain amplitude. On the other hand with smooth plates, the capillary suspensions showed strong evidence of wall slip as evident by the presence of three distinct peaks and lowered first yield stresses for all ? and ?w. These results can be interpreted based on the fact that a particle-depleted layer, which is known to be responsible for slip, is present in the vicinity of the smooth surfaces. The slip layer presents itself as an additional “pseudo-microstructure” (characteristic length scale) besides the two microstructures, aqueous bridges and solid particle agglomerates, that may occur in the system. With serrated plates, both the yield stresses (σ1σ2) and storage moduli plateau at lower strain (before the first yield point) and at higher strain (before the second yield point) (G\(^{\prime }_{p1}\), G\(^{\prime }_{p2}\)) were found to increase with ? (at a fixed ?w =?0.06) following power-law dependences. Similarly with increasing ?w (0.02 – 0.08) at a fixed ? =?0.62, the system behaved as a solid-like material in a jammed state with particles strongly held together as manifested by rapidly increasing σ1 and σ2. The usage of smooth surfaces primarily affected σ1 which was reflected by an approximately 70–90% decrement in the measured σ1 for all values of ?. By contrast, σ2 and G\(^{\prime }_{p2}\) were found to be unaffected as shown by close agreement of values obtained using serrated geometry due to vanishing slip layers at higher strain amplitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号