首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The component composition of essential oils produced by steam distillation from flower heads, leaves, and stems of Salvia anatolica (Lamiaceae), a recently described new species endemic from Turkey, was studied by GC/FID and GC/MS. A total of 127 volatile components representing 96% of the oil was identified in essential oil from flower heads and leaves. It was found that the principal oil components of flower heads and leaves were α-pinene (10.9%), β-pinene (6.7%), α-copaene (6.3%), heptacosane (6.2%), and hexadecanoic acid (5.0%). A total of 109 volatile compounds representing 87.9% of the oil was characterized in essential oil isolated from stems. The principal oil components of stems were identified as hexadecanoic acid (27.2%), tetradecanoic acid (15.2%), dodecanoic acid (5.5%), and α-copaene (5.0%). __________ Translated from Khimiya Prirodnykh Soedinenii, No. 6, pp. 552–555, November–December, 2007.  相似文献   

2.
Aerial parts of Sideritis cilicica Boiss. & Bal. and Sideritis bilgerana P.H. Davis (Lamiaceae) were hydrodistilled to obtain essential oils that were then analyzed by GC and GC/MS. β-Pinene (39%), α-pinene (28%), and β-phellandrene (20%) were the main components in the oil of S. cilicica, while β-pinene (48%), and α-pinene (32%) were the major constituents in the oil of S. bilgerana. The antimicrobial activities of the oils were evaluated by using the microdilution broth method. Both of the oils showed good inhibitory effects on C. albicans. __________ Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 559–561, November–December, 2005.  相似文献   

3.
Hydrodistilled volatile oils from crushed dry stems, leaves, and roots of Prangos latiloba Korov. (Umbelliferae) growing wild in Sabzevar (Iran) were analyzed by GC and GC/MS. Eight compounds constituting 84.72% of stem oil, twelve compounds constituting 95.39% of leaf oil, and nine compounds constituting 88.73% of root oil have been identified. The main components of stem oil were γ-cadinene (30.39%), α-pinene (25.47%), and sabinene (12.55%). The main components of leaf oil were germacrene D (27.79%), α-pinene (17.81%), β-caryophyllene (12.75%), and β-pinene (11.23%). The main components of root oil were spathulenol (29.5%), 1,8-cineol (19.42%), p-cymene (17.03%), and α-bisabolol (15.33%). __________ Published in Kimiya Prirodnikh Soedinenii, No. 5, pp. 443–444, September–October, 2005.  相似文献   

4.
The composition of the hydrodistilled essential oils obtained from dried leaves and fruits of Grammosciadium platycarpum Boiss. & Hausskn. were determined by GC and GC/MS. Twenty-five compounds (87.0%) and sixteen constituents (96.2%) were identified in the leaf and fruit oils, respectively. Linalool (26.1 and 53.9%), (E,E)-α-farnesene (24.1 and 20.4% ) and (Z)-β-santalol (10.6 and 10.9%) were the major components in the leaf and fruit oils. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 559–560, November–December, 2006.  相似文献   

5.
Hydrodistilled leaf oils of Pistacia chinensis Bunge from five locations in China were analyzed using GC/MS. A total of 58 compounds was identified in the oils, and a relatively high variation in their contents was found. The major compounds include β-phellandrene (0.54–53.86%), α-pinene (4.74–54.44%), β-pinene (0.49–42.90%), caryophyllene (5.64–20.01%), cis-ocimene (tr−43.93%), eudesmadiene (0–15.06%), and camphene (tr−20.57%). Cluster analysis classified the leaf oils into two chemotypes: one rich in α-pinene and β-pinene, and the other rich in β-phellandrene. Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 341–343, July–August, 2006.  相似文献   

6.
Analyses of the essential oils of Bunium elegans (Fenzl) Freyn and B. caroides (Boiss.) Hausskn. ex Bornm., using GC, GC/MS, and13 C-NMR spectroscopy resulted in identification of their chemical constituents. The oils of both species contain mainly the sesquiterpene hydrocarbons germacrene-D and E-caryophyllene, which amounted to 24.1% and 38% for B. elegans and 22.1% and 26.6% for B. caroides respectively. The oil of B. caroides contained the monoterpenes α-pinene and Z-β-ocimene in 4.1 and 5.9% respectively, while traces of monoterpenes were detected for B. elegans. On the other hand, in B. caroides the phenylpropanoid derivatives asaricin (7.5%) and dillapiole (10.2%) were among the major constituents. __________ Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 335–336, July–August, 2005.  相似文献   

7.
The hydrodistilled oils from the aerial parts of Ferula latisecta and Mozaffariania insignis, which is endemic to Iran, were analyzed by GC and GC/MS. (Z)-Ocimenone (32.4%), (E)-ocimenone (20.3%), and cis-pinocarvone (11.4%) were the main components among the 22 constituents characterized in the oil of F. latisecta, representing 87.7% of the total components detected. Twenty-five compounds were identified in the oil of M. insignis, representing 99.0% of the total oil, with octyl acetate (41.1%), β-pinene (30.3%), and α-pinene (23.9%) as the main constituents. The essential oils were examined for their potential antimicrobial activities. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 561–563, November–December, 2006.  相似文献   

8.
Steam distilled oil from the shoots, separated leaves, and stem, as well as from the flower of laurel (Laurus nobilis), grown in Montenegro, were analyzed by GC and GC/MS. The yield of essential oil was as follow: 1.4% in young shoots, 1.5% in the separated leaves, and 0.7% in separated stems. The main constituents of all investigated oils were 1,8-cineole, methyleugenol, and α-terpinyl acetate. Besides, α-pinene, β-pinene, sabinene, and linalool were also present. It was interesting and important for commercial samples of laurel essential oil that there was no significant difference among the essential oil obtained from young shoots and those obtained from leaves and stem. The main constituents of the flower oil were 1,8-cineole (15.7%), β-caryophyllene (9.5%), γ-muurolene (7.1%), α-terpinyl acetate (6.5%), and methyleugenol (3.9%). Published in Khimiya Prirodnykh Soedinenii, No. 4, pp. 337–339, July–August, 2007.  相似文献   

9.
The needle oil of the Algerian maritime pine (Pinus pinaster Ait.) growing in natural habitats in Sidi Feradj (Algiers region) was obtained by hydrodistillation in 0.3% yield and analyzed by GC and GC/MS. More than 46 compounds amounting to 65.2% of the total oil were identified. The main components were β-caryophyllene (26.6%), allo-aromadendrene (12.5%), and α-humulene (4.3%). __________ Published in Kimiya Prirodnikh Soedinenii, No. 5, pp. 445–447, September–October, 2005.  相似文献   

10.
The needle oils of Pinus sylvestris L. were analyzed by GC and GC-MS. The results showed some qualitative and quantitative variations. Forty-three components were identified in the oils of P. sylvestris. All the samples of essential oils contained α-pinene, camphene, and β-pinene as major constituents. Chemical variations of P. sylvestris samples were discussed. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 22–25, January–February, 2006.  相似文献   

11.
Aidi injection is a clinical medicine used in China for the treatment of cancer. Calycosin-7-O-β-d-glucoside is the main effective components of the formulas. In this study, a high performance liquid chromatographic (LC) method was developed to quantify calycosin-7-O-β-d-glucoside in rat plasma using a liquid–liquid extraction and ultraviolet (UV) absorbance detection. LC analysis was performed on a Diamonsil C18 column (200 × 4.6 mm i.d., 5 μm particle size) with isocratic mobile phase consisting of acetonitrile–0.05% phosphoric acid (19.5:80.5, v/v) of a flow rate of 1.0 mL min−1. The linear range was 0.11–17.6 μg mL−1 and the low quantification limit was 0.11 μg mL−1 (S/N = 10). The intra- and inter-day relative standard deviations (RSD) in the measurement of quality control (QC) samples 0.11, 0.22, 1.32 and 8.80 μg mL−1 ranged from 4.1 to 6.3 and 4.3 to 6.2%, respectively. The accuracy was from −6.7 to 4.3% in terms of relative error (RE). Calycosin-7-O-β-d-glucoside was stable in storage at −20 °C for 2 weeks and stable after three freeze–thaw cycles in rat plasma. This method was validated for specificity, accuracy, precision and was successfully applied to pharmacokinetic study of calycosin-7-O-β-d-glucoside in rat plasma after intravenous administration of Aidi lyophilizer.  相似文献   

12.
A new triterpene, taraxast-20(30)-en-3β,12β-diol (1), and eight known compounds were isolated from the leaves of Craibiodendron yunnanense. Their structures were established on the basis of spectral evidence. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 35–37, January–February, 2008.  相似文献   

13.
The chemical constituents of leaf oils of Elephantopus scaber L. from 12 locations in Southern China, including three provinces and Hong Kong, were investigated using GC/MS. A total of 24 compounds were detected, of which 20 were identified by their mass spectra fragmentation patterns. The major compounds include hexadecanoic acid (8.19–39.22%), octadecadienoic acid (trace - 29.22%), five alkane homologues, i.e., n-tetradecane (1.19–5.26%), n-pentadecane (3.22–12.05%), n-hexadecane (2.38–16.26%), n-heptadecane (2.48–15.32%), and n-octadecane (1.39–9.59%), as well as tetramethylhexadecenol (2.06–4.31%). Hierarchical cluster analysis classified the leaf oils into two groups. Two main chemotypes of leaf oils in E. scaber were thus identified, one rich in hexadecanoic acid and octadecadienoic acid, and the other rich in the five alkane homologues. __________ Published in Kimiya Prirodnikh Soedinenii No. 5, pp. 403–404, September–October, 2005.  相似文献   

14.
Water-distilled essential oils from the fruits of Lycium barbarum and L. ruthenicum were analyzed by GCMS. The main components in the oil of L. barbarum were found to be hexadecanoic acid (47.5%), linoleic acid (9.1%), β-elemene (5.4%), myristic acid (4.2%), and ethyl hexadecanoate (4.0%). The essential oil of L. ruthenicum has heptacosane (14.3%), ethyl linoleate (10.0%), hexacosane (7.0%), nonacosane (6.2%), and ethyl hexadecanoate (5.8%) as the main compounds. Published in Khimiya Prirodnykh Soedinenii, No. 1, pp. 20–21, January–February, 2006.  相似文献   

15.
In this study, the fatty acid contents of some Astragalus L. (Fabaceae) species from Turkey were determined by GC and GC-MS techniques. The seed oils of Astragalus sp. (A. echinops Aucher ex. Boiss., A. subrobustos Boriss., A. jodostachys, Boiss. & Buhse., A. falcatus Lam., A. fraxinifolius DC.) contained linolenic (between 23–41.%), linoleic (23–37%), and oleic acids (8–19%) as the major components. Fatty acid composition of the studied Astragalus taxa showed uniform fatty acid patterns. Palmitic and stearic acids were the major saturated fatty acids in the seed oils. The amounts of unsaturated fatty acids were higher than saturated fatty acids. Published in Khimiya Prirodnykh Soedinenii, No. 6, pp. 526–528, November–December, 2006.  相似文献   

16.
The essential oils of leaves and flowers of Tanacetum dumosum Boiss., an endemic medicinal shrub, were extracted by using hydrodistillation method and analysed using GC and GC–MS. A total of 43 and 44 compounds were identified in the essential oils from the leaves and flowers of T. dumosum, respectively. The major chemical constituents of leaves oil were borneol (27.9%), bornyl acetate (18.4%), 1,8-cineol (17.5%), α-terpineol (5.3%), cis-chrysanthenyl acetate (3.3%), camphene (2.7%) and terpinene-4-ol (1.9%), while the main components of the flower oil were isobornyl-2-methyl butanoate (41.1%), trans-linalyl oxide acetate (11.9%), 1,8-cineole (7.7%), thymol (4.2%), linalool (3.9%), camphor (2.9%), isobornyl propanoate (2.9%), α-terpineol (2.1%) and caryophyllene oxide (2.0%). Major qualitative and quantitative variations for some main chemical compounds among different aerial parts of T. dumosum were identified. High contents of borneol, bornyl acetate, 1,8-cineol and linalool in the leaves and flowers of T. dumosum show its potential for use in the food and perfumery industry.  相似文献   

17.
Cyclodextrins (α-CD, β-CD and 2,6-di-O-dimethyl-β-CD (DM-β-CD)) were found to form inclusion compounds with thiophenes (thiophene (T), bithiophene (2T)) in water and in crystalline states. The structures of α-CD–T, β-CD–2T, and DM-β-CD–2T inclusion complexes were determined by X-ray crystallography. DM-β-CD forms a 1:1 cage type complex with 2T. In contrast, β-CD formed 2:3 (CD:guest) complexes with thiophene and α-CD formed 2:3 complexes, both of the channel type. These inclusion complexes were found to polymerize by FeCl3 in the inclusion compounds in water. The products were formed poly-pseudo-rotaxane between cyclodextrins and poly(thiophene) characterized by IR, 1H-NMR and 13C CP/MAS NMR. The molecular weights of the poly-pseudo-rotaxanes with poly(thiophene) were determined by the MALDI-TOF mass spectra to be 3000–5000. In comparison between poly-pseudo-rotaxane (DM-β-CD–poly(thiophene)), authentic poly(thiophene) and the washed DM-β-CD–poly(thiophene) which was washed with DMF to dethread DM-β-CD, these poly-pseudo-rotaxane was characterized by Raman, UV–vis and fluorescence spectra. The maximum emission band of DM-β-CD–poly(thiophene) shifted to a shorter wavelength. The hypsochromic shift was derived from poly-pseudo-rotaxane with DM-β-CD.  相似文献   

18.
Chemical compositions of 16 Artemisia herba-alba oil samples harvested in eight East Moroccan locations were investigated by GC and GC/MS. Chemical variability of the A. herba-alba oils is also discussed using statistical analysis. Detailed analysis of the essential oils led to the identification of 52 components amounting to 80.5–98.6 % of the total oil. The investigated chemical compositions showed significant qualitative and quantitative differences. According to their major components (camphor, chrysanthenone, and α- and β-thujone), three main groups of essential oils were found. This study also found regional specificity of the major components.  相似文献   

19.
Some oxyhalides can be found in drinking waters as inorganic disinfection byproducts. An on-line coupled capillary isotachophoresis—capillary zone electrophoresis (CITP-CZE) method was developed for the analysis of chlorate, chlorite and bromate in water. The optimized CITP-CZE electrolyte system consisted of the following: 10 mM—HCl+20 mM—β-Alanine (leading electrolyte), 5 mM—succinic acid (terminating electrolyte), and 10 mM—succinic acid +5 mM—β-Alanine +0.1% HPMC (carrier electrolyte). A clear separation of oxyhalides from other components of drinking water was achieved within 25 min. Method characteristics, i.e., linearity (0–200 ng/mL), accuracy (88–110%), intra-assay (3–5%), quantification limit (5–15 ng/mL), and detection limit (2–5 ng/mL), were determined. Minimum labor requirements, sufficient sensitivity and low running cost are important attributes of this method. It was found that the developed method is useful for the routine analysis of oxyhalides in water.  相似文献   

20.
A method for preparative production of 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1), a glycoside from Panax japonicus, chikusetsusaponin-LT8 was developed. Chemical transformation of betulafolientriol, a component of Betula leaves extract, produced the 12-keto-20S-protopanaxadiol (3β,20S-dihydroxydammar-24-en-12-one) (2), exhaustive glycosylation of which by 2,3,4,6-tetra-O-acetyl-α-D-glucopyranosylbromide (3) under Koenigs—Knorr reaction conditions with subsequent removal of protecting groups formed 3β,20S-dihydroxydammar-24-en-12-one 3,20-di-O-β-D-glucopyranoside (1). The principal glycosylation product was 3β,20S-dihydroxydammar-24-en-12-one 3-O-β-D-glucopyranoside if equimolar amounts of (2) and (3) were used. __________ Translated from Khimiya Prirodnykh Soedinenii, No. 1, pp. 44–48, January–February, 2006.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号