首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 35 毫秒
1.
The adsorption of cationic copolymers prepared by the quaternization of poly(4-vinylpyridine) with bromoacetic acid and/or ethyl bromide on the surface of anionic glass microspheres and the stability of the as-prepared complexes against dissociation in water-salt solutions are studied. Experiments are performed with the use of two types of copolymers: copolymers carrying cationic and hydrophobic units and copolymers carrying cationic and zwitterionic (electroneutral) units in main chains. For hydrophobic copolymers, the limiting adsorption decreases as the molar fraction of cationic groups in the copolymer, α, increases. In the case of hydrophilic copolymers, the dependence of limiting adsorption on α has a bellshaped pattern with a maximum at α = 0.15 and a horizontal segment at α > 0.4. Hydrophobic copolymers feature irreversible binding with microspheres at α > 0.24; hydrophilic copolymers, at α ≥ 0.15. The obtained data may be used for creation of biocidal polymer coatings and sorption layers that reversibly desorb from the surface with a change in the salt concentration in the surrounding aqueous solution.  相似文献   

2.
 The sorption of solved organic molecules such as p-nitrophenol or dyes on previously formed nanoparticles based on polyelectrolyte/micelle complexes or polycation/polyanion complexes was studied. It could be shown that the sorption capability strongly depends on the structure and properties of the complex particles. Investigations have been made with complex particles that differ in their hydrophobic/hydrophilic structure, size and net charge. Such complex aggregates could be prepared by mixing the cationic surfactant dodecylamido-ethyldimethylbenzylammonium chloride, the polycations poly(diallyldimethylammonium chloride) or poly(methacryloyloxyethyldimethylbenzylammonium chloride) and the copolymers of maleic acid with propene or methylstyrene as anionic components. It is found that the sorption capability increases with increasing molar mass and hydrophobic properties of the components used. In addition, the concentration ratio c polym/c org.poll that was required to reach optimal sorption conditions could be decreased by the use of macromolecules with high molar masses. The best results were obtained by using cationic stabilized complex particles formed with high-molar-mass polycations as sorbents for anionic dye molecules. Received: 10 November 1999 Accepted: 24 February 2000  相似文献   

3.
A series of thermally responsive copolymers of N-isopropylacrylamide (NIPAAM) with a fluorinated hydrophobic comonomer, either hexafluoroisopropylmethacrylate (HFIPMA) or 2,2,3,3,4,4-hexafluorobutylmethacrylate (HFBMA) and a hydrophilic comonomer, methacrylic acid (MAA), were synthesized by emulsion polymerization. The chemical structures of the copolymers were studied by the IR technique. Dynamic light scattering (DLS) showed that aqueous latices of the copolymers exhibited swelling–deswelling changes typical to PNIPAAM; the degree of swelling as well as the temperature at which the polymers collapse depended on the chemical structure of the comonomers. Endotherms related to the contraction of the polymers were studied by differential scanning calorimetry (DSC). A combination of DLS and DSC results revealed that the hydrophobic and hydrophilic units in the copolymers strongly affected the swelling behavior, as well as the local environment of the PNIPAAM chains. The comonomer HFIPMA increased the hydrophobicity of NIPAAM, reduced the swelling, and caused coagulation of the copolymer of NIPAAM and HFIPMA at temperatures above the critical temperature. Hydrophobicity of HFIPMA also affected the rheological properties of the latex. The HFBMA comonomer increased the swelling of the latex particles. Methacrylic acid added into the associating copolymers made the copolymers to show polyelectrolyte behavior with an increase of swelling and a decrease of the enthalpy change upon the collapse. © 1998 John Wiley & Sons, Inc. J. Polym. Sci. B Polym. Phys. 36: 2141–2152, 1998  相似文献   

4.
Well-defined, positively charged, amphiphilic copolymers containing long alkyl side chains were used as stabilizers in the miniemulsion polymerization of styrene. The copolymers were prepared by controlled free-radical copolymerization of styrene and vinyl benzyl chloride using either the reversible addition-fragmentation chain transfer method or TEMPO-mediated polymerization. The benzyl chloride moities were modified by two different long alkyl chain tertiary amines (N,N-dimethyldodecyl amine and N,N-dimethylhexadecyl amine) to yield the amphiphilic copolymers with vinylbenzyl dimethyl alkyl ammonium chloride units. Owing to their high structural quality, only a small amount of these copolymers was required to stabilize the latex particles (0.5–2 wt% vs styrene). Moreover, in the absence of any hydrophobic agent, the amphiphilic comblike copolymer preserved the colloidal stability of both the initial liquid miniemulsion and the final latex. Ill-defined, analogous copolymers were synthesized by conventional free-radical polymerization and in comparison, exhibited poor stabilization properties.  相似文献   

5.
The interaction of amphiphilic block copolymers comprising an anionic block (polyacrylate or polymethacrylate) and a hydrophobic block (polystyrene, poly(butyl acrylate) or polyisobutylene) with lightly crosslinked poly(N,N-diallyl-N,N-dimethylammonium chloride) is studied for the first time. It is shown that the cationic hydrogel can sorb anionic amphiphilic block copolymers via electrostatic interaction with the corona of block copolymer micelles. The rate of sorption of block copolymer polyelectrolytes is significantly lower than the rate of sorption of linear polyions and is controlled by the lengths of the hydrophilic and hydrophobic blocks and the flexibility of the latter blocks. The sorption of amphiphilic block copolymers is accompanied by their self-assembly in the polycomplex gel and formation of a continuous hydrophobic layer impermeable to water and the low-molecular-mass salt dissolved in it.  相似文献   

6.
Laser microelectrophoresis, dynamic light scattering, and fluorescence and UV spectroscopy are employed to study poly-N-ethyl-4-vinylpyridinium bromide adsorption on the surface of bilayer lipid vesicles (liposomes) formed from mixtures of anionic phosphatidyl serine and electroneutral phosphatidylcholine. It is established that polycation adsorption is accompanied by the neutralization of charges on liposomes and their aggregation. The subsequent addition of a low-molecular-weight salt (NaCl) solution to suspensions of complexes causes them to dissociate into their initial components, while the stability of the complexes with respect to the salt action increases with the fraction of the anionic lipid in the liposome membranes. The data obtained are interpreted from the position of the formation-disintegration of a molecular capacitor, the charge of which is generated by spatially separated anionic lipids located in the bilayer membrane and cationic units of the adsorbed polyamine.  相似文献   

7.
Complexes between sodium (sulfamate‐carboxylate)isoprene/ethylene oxide double hydrophilic block copolymers and lysozyme, a globular protein, were formed in aqueous solutions, at pH 7, because of electrostatic interactions between the anionic groups of the polyelectrolyte block of the copolymers and the cationic groups of lysozyme. The structure of the complexes was investigated as a function of the anionic/cationic charge ratio of the two components in solution and ionic strength by static, dynamic, and electrophoretic light scattering, atomic force microscopy, and fluorescence spectroscopy. The mass and size of the micellar‐like complexes depend on the mixing ratio and the molecular characteristics (molecular weight, composition, and architecture) of the copolymer used. Complexation persists at 0.15M NaCl, the value for physiological saline, as a result of additional hydrophobic interactions between the copolymers and the enzyme. Fluorescence spectroscopy measurements indicate that the secondary structure of lysozyme does not change substantially after complex formation. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 509–520, 2007  相似文献   

8.
Aminodextran containing submicron magnetic latex particles were prepared in two steps: (a) transformation of oil-in-water magnetic emulsion into structured magnetic latex particles via combination of seed and miniemulsion-like polymerization process and (b) immobilization (adsorption and chemical grafting) of prepared aminodextran onto negatively charged seed magnetic latex particles. The elaborated magnetic latex particles were characterized in terms of particle size, size distribution, morphology, surface charge density, chemical composition, magnetic properties, and also colloidal stability. The results showed that the morphology of the prepared seed magnetic latex is core–shell like and the cationic latex particles are hydrophilic and of high colloidal stability, irrespective of the aminodextran immobilization process.  相似文献   

9.
Electrostatic interaction between poly(methyl methacrylate) latex particles with different levels of chitosan modification and bovine serum albumin (BSA) was investigated. The critical flocculation concentration is in the range 5–15 nmol dm−3 for these latex products toward added BSA. A series of isothermal equilibrium adsorption experiments shows that the adsorption process is divided into two distinct intervals. Adsorption of BSA on latex particles in intervals I and II is primarily controlled by charge neutralization and hydrophobic interaction, respectively. Intervals I and II can be reasonably described by an empirical parabola equation and the Langmuir isotherm model, respectively. The maximum amount of BSA adsorbed per unit weight of polymer particles was observed at pH ≅ 5. A maximum elution yield of about 80% can be achieved using NaSCN as the elution electrolyte, and NaSCN is more effective in inducing desorption of BSA from the particle surface than NaCl. The chitosan content has very little effect on the interaction between latex particles and BSA. By contrast, the influence of the content of 2,2′-azobis(2-amidinopropane) dihydrochloride, a cationic initiator used in preparing the chitosan-modified latex products, on the BSA adsorption process is significant. Received: 26 March 1999 Accepted in revised form: 3 June 1999  相似文献   

10.
Water-soluble diblock copolymers of methyl tri(ethylene glycol) vinyl ether (hydrophilic block) and isobutyl vinyl ether (hydrophobic block) of different molecular weights and composition were synthesized by living cationic polymerization. The molecular weight and comonomer composition of these copolymers were determined by GPC and 1H NMR spectroscopy, respectively. Aqueous solutions of the copolymers were characterized in terms of their micellar behavior using dynamic light scattering, aqueous GPC, and dye solubilization. All the copolymers formed aggregates with the exception of a diblock copolymer with only two hydrophobic monomer units. The micellar hydrodynamic size scaled with the 0.61 power of the number of hydrophobic units, in good agreement with a theoretical exponent of 0.73. An increase in the length of the hydrophobic block at constant hydrophilic block length or an increase in the overall polymer size at constant block length ratio both resulted in lower critical micelle concentrations (cmcs). The cloud points of 1% w/w aqueous solutions of the polymers were determined by turbidimetry. An increase in the length of the hydrophobic block at constant hydrophilic block length caused a decrease in the cloud points of the copolymers. However, an increase in the overall polymer size at constant block length ratio led to an increase in the cloud point. © 1996 John Wiley & Sons, Inc.  相似文献   

11.
Several series of amphiphilic diblock copolymers are investigated as macrosurfactants in comparison to reference low-molar-mass and polymeric surfactants. The various copolymers share poly(butyl acrylate) as a common hydrophobic block but are distinguished by six different hydrophilic blocks (one anionic, one cationic, and four nonionic hydrophilic blocks) with various compositions. Dynamic light scattering experiments indicate the presence of micelles over the whole concentration range from 10(-4) to 10 g x L(-1). Accordingly, the critical micellization concentrations are very low. Still, the surface tension of aqueous solutions of block copolymers decreases slowly but continuously with increasing concentration, without exhibiting a plateau. The longer the hydrophobic block, the shorter the hydrophilic block, and the less hydrophilic the monomer of the hydrophilic block is, the lower the surface tension is. However, the effects are small, and the copolymers reduce the surface tension much less than standard low-molar-mass surfactants. Also, the copolymers foam much less and even act as anti-foaming agents in classical foaming systems composed of standard surfactants. The copolymers stabilize O/W emulsions made of methyl palmitate as equally well as standard surfactants but are less efficient for O/W emulsions made of tributyrine. However, the copolymer micelles exhibit a high solubilization power for hydrophobic dyes, probably at their core-corona interface, in dependence on the initial geometry of the micelles and the composition of the block copolymers. Whereas micelles of copolymers with strongly hydrophilic blocks are stable upon solubilization, solubilization-induced micellar growth is observed for copolymers with moderately hydrophilic blocks.  相似文献   

12.
Aqueous dispersions of fluorinated particles (PBF) based on copolymers of butyl acrylate with 2-(perfluorononenyloxy)ethyl methacrylate (FNEMA), 2,2,3,3-tetrafluoropropyl acrylate, and 2,2,3,3,4,4,5,5-octafluoropentyl acrylate, respectively, were synthesized by emulsion polymerization in the presence of unfluorinated and fluorinated anionic surfactant binary mixtures. These fluorinated dispersions showed good to excellent colloidal stability, as determined by freeze–thaw, centrifugation, and critical coagulation concentration measurements. Blending of small amounts (1–10 wt.%) of PBF latex particles with a waterborne hybrid poly(urethane-urea)-methacrylate (PUUA) resulted in a series of slightly fluorinated modified PUUA with good film-forming properties and low surface energy. The precursor PUUA had been synthesized separately by simultaneous chain extension of a poly(ester-urethane)-diisocyanate with ethylenediamine and soapless free radical polymerization of methyl methacrylate swelling the resulting branched or slightly cross-linked poly(urethane-urea) self-dispersible ionomer particles. The results of dynamic light scattering and zeta potential measurements suggest that the merging of PUUA and PBF particles and either engulfing or interdiffusion of the incompatible macromolecular phases occurred to some extent already in the colloidal state. Highly hydrophobic films with surface energy as low as 17 mJ/m2 were obtained upon the hybridization of PUUA with the FNEMA copolymer. Thermal annealing allowed minimizing the effects of fast surface dynamics, leading ultimately to water absorption, and promoting synergistic enhancement of the resulting hybrid film hardness, as required for coating applications.  相似文献   

13.
With a view to preparing monosized hydrophilic functional magnetic latex particles based on a two-step strategy using anionic iron oxide and cationic polymer latexes, the adsorption step was systematically investigated for a better control of the subsequent encapsulation step. The iron oxide nanoparticles were first obtained according to the classical precipitation method of ferric and ferrous chloride salt using a concentrated sodium hydroxide solution, whereas the polystyrene (PS), P(S/N-isopropylacrylamide (NIPAM)) core–shell and PNIPAM latexes were produced via emulsion and precipitation polymerizations, respectively. The polymer and inorganic colloids were then characterised. The adsorption of iron oxide nanoparticles onto the three types of polymer latexes via electrostatic interaction was studied as a function of iron oxide particle concentration, charge density and the cross-linking density of the hydrophilic layer. The maximum amounts of magnetic nanoparticles adsorbed onto the various latexes were found to increase in the following order: PS < P(S/NIPAM) < P(NIPAM). This significant difference is discussed by taking into account the charge distribution in the hydrogel layer and diffusion phenomena inside the cross-linked hydrophilic shell. Received: 28 December 1998 Accepted in revised form: 15 April 1999  相似文献   

14.
The formation of complexes between the cationic surfactant dodecyl trimethylammonium bromide (DTAB) and the comb-type anionic polyelectrolytes poly(sodium acrylate-co-sodium 2-acrylamido-2-methylpropane sulfonate)-g-poly(N,N-dimethylacrylamide) (P(NaA-co-NaAMPS)-g-PDMAMx) was investigated in dilute aqueous solutions by means of turbidimetry, pyrene fluorescence probing, viscometry, z-potential measurements, and dynamic light scattering. The comb-type copolymers consist of an anionic copolymer backbone, P(NaA-co-NaAMPS), containing 84 mol % NaAMPS units, while the weight percentage, x, of the PDMAM side chains varies from x = 12% (w:w) up to x = 58% (w:w). It was found that, contrary to the water-insoluble complexes formed between the linear polyelectrolyte P(NaA-co-NaAMPS) and DTAB, the solubility in water of the complexes formed between the comb-type copolymers and DTAB is significantly improved with increasing x. The complexation process starts at the same critical aggregation concentration (about 2 orders of magnitude lower than the critical micelle concentration of DTAB), regardless of x, and it is accompanied by charge neutralization and appearance of hydrophobic microdomains. Both effects lead to the substantial collapse of the polyelectrolyte chain upon addition of DTAB. However, the complexes of the comb-type copolymers with DTAB are stabilized in water as nanoparticles, and probably consisted of a water-insoluble core (the polyelectrolyte/surfactant complex), protected by a hydrophilic nonionic PDMAM corona. The size of the nanoparticles varies from approximately 35 nm up to approximately 120 nm, depending on x.  相似文献   

15.
The modification of poly(4-vinylpyridine) with ω-bromocarboxylic acids and alkyl bromides yields three types of polyampholytes: polyampholytes containing both cationic and anionic groups in each monomer unit (polybetaines), polyampholytes containing betaine and cationic units, and polyampholytes containing betaine units and side cetyl radicals. Their complex formation with liposomes formed from zwitterionic (electroneutral) phosphatidylcholine and anionic diphosphatidylglycerol (cardiolipin) is investigated. The method for fixation of polymers on the liposomal membrane and the stability of the formed complexes are determined by the chemical structure of macromolecules. For the most part, polyelectrolytes are electrostatically adsorbed on the membrane and are fully removed from it with an increase in the salt concentration in the surrounding solution. An exception is the polybetaine obtained through the modification of poly(4-vinylpyridine) with ω-bromobutyric acid, which irreversibly binds to liposomes probably owing to the incorporation of macromolecular fragments into the hydrophobic part of the lipid bilayer. The insertion of side cetyl radicals into polybetaine molecules stabilizes their complexes with liposomes in the presence of salts. The cytotoxicity of the synthesized polyampholytes is one to two orders of magnitude lower than that of a cationic polymer with the same degree of polymerization.  相似文献   

16.
In the case of cationic polystyrene latex, the adsorption of anionic surfactants involves a strong electrostatic interaction between both the particle and the surfactant, which may affect the conformation of the surfactant molecules adsorbed onto the latex-particle surface. The adsorption isotherms showed that adsorption takes place according to two different mechanisms. First, the initial adsorption of the anionic surfactant molecules on cationic polystyrene surface would be due to the attractive electrostatic interaction between both ionic groups, laying the alkyl-chains of surfactant molecules flat on the surface as a consequence of the hydrophobic interaction between these chains and the polystyrene particle surface, which is predominantly hydrophobic. Second, at higher surface coverage the adsorbed surfactant molecules may move into a partly vertical orientation with some head groups facing the solution. According to this second mechanism the hydrophobic interactions of hydrocarbon chains play an important role in the adsorption of surfactant molecules at high surface coverage. This would account for the very high negative mobilities obtained at surfactant concentration higher than 5×10–7 M. Under high surface-coverage conditions, some electrophoretic mobility measurements were performed at different ionic strength. The appearance of a maximum in the mobility-ionic strength curves seems to depend upon alkyl-chain length. Also the effects of temperature and pH on mobilities of anionic surfactant-cationic latex particles have been studied. The mobility of the particles covered by alkyl-sulphonate surfactants varied with the pH in a similar manner as it does with negatively charged sulphated latex particles, which indicates that the surfactant now controls the surface charge and the hydrophobic-hydrophilic character of the surface.Dedicated to the memory of Dr. Safwan Al-Khouri IbrahimPresented at the Euchem Workshop on Adsorption of Surfactants and Macromolecules from Solution, Åbo (Turku), Finland, June 1989  相似文献   

17.
Spectroscopic ellipsometry has been used to examine the pH-responsive interfacial adsorption of a series of biocompatible diblock copolymers incorporating 2-methacryloyloxyethyl phosphorylcholine-based (MPC) residues and 2-(dialkylamino)ethyl methacrylate residues, with a specific focus on 2-(diethylamino)ethyl groups (referred to as MPCm-DEAn, where m and n refer to the mean degrees of polymerization of each block) at the hydrophilic silicon oxide/water interface. For all the copolymers studied the surface excess shows only weak concentration dependence. Increasing the length of the DEA block has little effect on the dynamic or equilibrated adsorption at pH 7, indicating that the DEA block adopts a flat conformation on the silicon oxide surface at this pH. With increasing pH, however, the surface excess shows a dramatic increase, followed by a subsequent decline. The observed maximum in surface excess represents a balance between charge over-compensation of the copolymer with the oppositely charged surface and the subsequently reduced charge density of the copolymer. Variations in the observed maxima for various MPCm-DEAn diblock copolymers indicate different surface conformations at high pH. Salt addition does not affect copolymer adsorption. This behavior is attractive for biomedical applications in which the ionic strength is variable. It was also found that the preadsorbed diblock copolymers immobilized DNA from solution to an extent that is proportional to the relative charge ratio between the anionic DNA and the cationic DEA block of the copolymer.  相似文献   

18.
Polyester fabric (poly(ethylene terephthalate)) is a hydrophobic polymer. Its hydrophobic nature can be a disadvantage for certain applications like dyeing, finishing, detergency, etc. Physical or chemical modification of the polyester to make it more hydrophilic is therefore desirable for certain performance characteristics. Surface modification of polyester to make it hydrophilic can be achieved by adsorbing polymers on the polyester surface. Starch is a commonly available, hydrophilic polymer used in many textile applications that can be used to modify polyester. However, it needs to be chemically modified so that it can adsorb on the polyester fabric and physically modify the fabric characteristics. The polymers used in this study are two different modified starches—cationic and anionic starches and mixtures of the two. The adsorption kinetics on a polyester substrate was studied. The effect of charge and hydrophobicity on adsorption was investigated. Cationic starches were shown to readily adsorb on polyester and this was attributed to electrostatic interactions. Hydrophobic substituents on the cationic moiety resulted in increased adsorption. This was attributed to the weak hydrophobic interaction between the polymer chains which could result in a more coiled polymer conformation. It is hypothesized that more starch molecules are required for surface coverage of the polyester, resulting in an increase in adsorption. Anionic starch was adsorbed on the substrate but at a slower rate than the cationic starches. It is likely that there is a H bonding between acid groups on the starch and the ester groups of the polyester. However, the anionic starch is desorbed when the polyester is placed in an aqueous medium. When a blend of cationic starch and anionic starch was used, a low concentration of anionic starch was seen to increase adsorption, indicating that the polyelectrolyte complex itself may be adsorbing on the substrate. Further increases cause a decrease in adsorption as no sites may be available on the complex for adsorption. When hydrophobic substituents are present, addition of the anionic starch causes a decrease in adsorption at all concentrations. This was attributed to the “crosslinking” between the hydrophobically modified starch and the anionic polymer.  相似文献   

19.
A systematic study of the adsorption of charged nanoparticles at dispersed oil-in-water emulsion interfaces is presented. The interaction potentials for negatively charged hexadecane droplets with anionic polystyrene latex particles or cationic gold particles are calculated using DLVO theory. Calculations demonstrate that increased ionic strength decreases the decay length of the electrostatic repulsion leading to enhanced particle adsorption. For the case of anionic PS latex particles, the energy barrier for particle adsorption is also reduced when the surface charge is neutralized through changes in pH. Complementary small-angle scattering experiments show that the highest particle adsorption for PS latex occurs at moderate ionic strength and low pH. For cationic gold particles, simple DLVO calculations also explain scattering results showing that the highest particle adsorption occurs at neutral pH due to the electrostatic attraction between oppositely charged surfaces. This work demonstrates that surface charges of particles and oil droplets are critical parameters to consider when engineering particle-stabilized emulsions.  相似文献   

20.
Emulsifier-free emulsion copolymerization of methyl methacrylate with N-vinylformamide and glycidyl methacrylate initiated by a cationic or anionic azoinitiator in the presence of dextran is used to produce monodisperse polymer particles with a developed multifunctional surface. As a result, monodisperse particles are obtained with a diameter of 350–660 nm, the surface layer of which contains, in addition to carboxyl groups, amino or epoxy groups. The conditions are determined for the formation of multifunctional hydrophilic particle surface via the hydrolysis of comonomer units and residual groups of initiators. The limiting values of bovine serum albumin chemisorption (2.4 and 1.0 mg/m2 on the particles of methyl methacrylate copolymers with glycidyl methacrylate or N-vinyl formamide, respectively) indicate that the obtained particles have sufficient sorption capacity to be applied as carriers for immunoreagents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号