首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The well‐known Friendship Theorem states that if G is a graph in which every pair of vertices has exactly one common neighbor, then G has a single vertex joined to all others (a “universal friend”). V. Sós defined an analogous friendship property for 3‐uniform hypergraphs, and gave a construction satisfying the friendship property that has a universal friend. We present new 3‐uniform hypergraphs on 8, 16, and 32 vertices that satisfy the friendship property without containing a universal friend. We also prove that if n ≤ 10 and n ≠ 8, then there are no friendship hypergraphs on n vertices without a universal friend. These results were obtained by computer search using integer programming. © 2008 Wiley Periodicals, Inc. J Combin Designs 16: 253–261, 2008  相似文献   

2.
We propose an O(n4) algorithm to build the modular decomposition tree of hypergraphs of dimension three and show how this algorithm can be generalized to compute in O(n3k − 5) time the decomposition of hypergraphs of any fixed dimension k.  相似文献   

3.
We show how to speed up Karmarkar's linear programming algorithm for the case of multicommodity flows. The special structure of the constraint matrix is exploited to obtain an algorithm for the multicommodity flow problem which requires O(s 3.5 v 2.5 eL) arithmetic operations, each operation being performed to a precision of O (L) bits. Herev is the number of vertices ande is the number of edges in the given network,s is the number of commodities, andL is bounded by the number of bits in the input. We obtain a speed up of the order of (e 0.5/v 0.5)+(e 2.5/v 2.5s2) over Karmarkar's modified algorithm which is substantial for dense networks. The techniques in the paper can also be used to speed up any interior point algorithm for any linear programming problem whose constraint matrix is structurally similar to the one in the multicommodity flow problem. Research supported by a fellowship from the Shell Foundation. Research supported by NSF under grant NSF DCR-8404239.  相似文献   

4.
We propose a polynomial-time-delay polynomial-space algorithm to enumerate all efficient extreme solutions of a multi-criteria minimum-cost spanning tree problem, while only the bi-criteria case was studied in the literature. The algorithm is based on the reverse search framework due to Avis and Fukuda. We also show that the same technique can be applied to the multi-criteria version of the minimum-cost basis problem in a (possibly degenerated) submodular system. As an ultimate generalization, we propose an algorithm to enumerate all efficient extreme solutions of a multi-criteria linear program. When the given linear program has no degeneracy, the algorithm runs in polynomial-time delay and polynomial space. To best of our knowledge, they are the first polynomial-time delay and polynomial-space algorithms for the problems.  相似文献   

5.
This paper presents a new algorithm for identifying all supported non-dominated vectors (or outcomes) in the objective space, as well as the corresponding efficient solutions in the decision space, for multi-objective integer network flow problems. Identifying the set of supported non-dominated vectors is of the utmost importance for obtaining a first approximation of the whole set of non-dominated vectors. This approximation is crucial, for example, in two-phase methods that first compute the supported non-dominated vectors and then the unsupported non-dominated ones. Our approach is based on a negative-cycle algorithm used in single objective minimum cost flow problems, applied to a sequence of parametric problems. The proposed approach uses the connectedness property of the set of supported non-dominated vectors/efficient solutions to find all integer solutions in maximal non-dominated/efficient facets.  相似文献   

6.
Efficient sequential quadratic programming (SQP) implementations are presented for equality-constrained, discrete-time, optimal control problems. The algorithm developed calculates the search direction for the equality-based variant of SQP and is applicable to problems with either fixed or free final time. Problem solutions are obtained by solving iteratively a series of constrained quadratic programs. The number of mathematical operations required for each iteration is proportional to the number of discrete times N. This is contrasted by conventional methods in which this number is proportional to N 3. The algorithm results in quadratic convergence of the iterates under the same conditions as those for SQP and simplifies to an existing dynamic programming approach when there are no constraints and the final time is fixed. A simple test problem and two application problems are presented. The application examples include a satellite dynamics problem and a set of brachistochrone problems involving viscous friction.  相似文献   

7.
Consider the problem of computing the smallest enclosing ball of a set of m balls in n. Existing algorithms are known to be inefficient when n > 30. In this paper we develop two algorithms that are particularly suitable for problems where n is large. The first algorithm is based on log-exponential aggregation of the maximum function and reduces the problem into an unconstrained convex program. The second algorithm is based on a second-order cone programming formulation, with special structures taken into consideration. Our computational experiments show that both methods are efficient for large problems, with the product mn on the order of 107. Using the first algorithm, we are able to solve problems with n = 100 and m = 512,000 in about 1 hour.His work was supported by Australian Research Council.Research supported in part by the Singapore-MIT Alliance.  相似文献   

8.
We present a logspace algorithm that constructs a canonical intersection model for a given proper circular-arc graph, where canonical means that isomorphic graphs receive identical models. This implies that the recognition and the isomorphism problems for these graphs are solvable in logspace. For the broader class of concave-round graphs, which still possess (not necessarily proper) circular-arc models, we show that a canonical circular-arc model can also be constructed in logspace. As a building block for these results, we design a logspace algorithm for computing canonical circular-arc models of circular-arc hypergraphs. This class of hypergraphs corresponds to matrices with the circular ones property, which play an important role in computational genomics. Our results imply that there is a logspace algorithm that decides whether a given matrix has this property.Furthermore, we consider the Star System Problem that consists in reconstructing a graph from its closed neighborhood hypergraph. We show that this problem is solvable in logarithmic space for the classes of proper circular-arc, concave-round, and co-convex graphs.Note that solving a problem in logspace implies that it is solvable by a parallel algorithm of the class AC1. For the problems under consideration, at most AC2 algorithms were known earlier.  相似文献   

9.
A one-phase algorithm for semi-infinite linear programming   总被引:1,自引:0,他引:1  
We present an algorithm for solving a large class of semi-infinite linear programming problems. This algorithm has several advantages: it handles feasibility and optimality together; it has very weak restrictions on the constraints; it allows cuts that are not near the most violated cut; and it solves the primal and the dual problems simultaneously. We prove the convergence of this algorithm in two steps. First, we show that the algorithm can find an-optimal solution after finitely many iterations. Then, we use this result to show that it can find an optimal solution in the limit. We also estimate how good an-optimal solution is compared to an optimal solution and give an upper bound on the total number of iterations needed for finding an-optimal solution under some assumptions. This algorithm is generalized to solve a class of nonlinear semi-infinite programming problems. Applications to convex programming are discussed.  相似文献   

10.
Kojima, Megiddo, and Mizuno investigate an infeasible-interior-point algorithm for solving a primal—dual pair of linear programming problems and they demonstrate its global convergence. Their algorithm finds approximate optimal solutions of the pair if both problems have interior points, and they detect infeasibility when the sequence of iterates diverges. Zhang proves polynomial-time convergence of an infeasible-interior-point algorithm under the assumption that both primal and dual problems have feasible points. In this paper, we show that a modification of the Kojima—Megiddo—Mizuno algorithm solves the pair of problems in polynomial time without assuming the existence of the LP solution. Furthermore, we develop anO(nL)-iteration complexity result for a variant of the algorithm.The original title was Polynomiality of the Kojima—Megiddo—Mizuno infeasible-interior-point algorithm for linear programming.Research performed while visiting Cornell University (April 1992 – January 1993) as an Overseas Research Scholar of the Ministry of Science, Education and Culture of Japan.  相似文献   

11.
12.
We describe a potential reduction method for convex optimization problems involving matrix inequalities. The method is based on the theory developed by Nesterov and Nemirovsky and generalizes Gonzaga and Todd's method for linear programming. A worst-case analysis shows that the number of iterations grows as the square root of the problem size, but in practice it appears to grow more slowly. As in other interior-point methods the overall computational effort is therefore dominated by the least-squares system that must be solved in each iteration. A type of conjugate-gradient algorithm can be used for this purpose, which results in important savings for two reasons. First, it allows us to take advantage of the special structure the problems often have (e.g., Lyapunov or algebraic Riccati inequalities). Second, we show that the polynomial bound on the number of iterations remains valid even if the conjugate-gradient algorithm is not run until completion, which in practice can greatly reduce the computational effort per iteration.We describe in detail how the algorithm works for optimization problems withL Lyapunov inequalities, each of sizem. We prove an overallworst-case operation count of O(m 5.5L1.5). Theaverage-case complexity appears to be closer to O(m 4L1.5). This estimate is justified by extensive numerical experimentation, and is consistent with other researchers' experience with the practical performance of interior-point algorithms for linear programming.This result means that the computational cost of extending current control theory based on the solution of Lyapunov or Riccatiequations to a theory that is based on the solution of (multiple, coupled) Lyapunov or Riccatiinequalities is modest.Supported by the Belgian National Fund for Scientific Research (NFWO). Research supported in part by the Belgian program on Interuniversity Attraction Poles (IUAP 17 and 50) initiated by the Belgian State, Prime Minister's Office, Science Policy Programming.Research supported in part by AFOSR (under F49620-92-J-0013), NSF (under ECS-9222391) and ARPA (under F49620-93-1-0085).  相似文献   

13.
It is demonstrated that Wolfe's algorithm for finding the point of smallest Euclidean norm in a given convex polytope generates the same sequence of feasible points as does the van de Panne-Whinstonsymmetric algorithm applied to the associated quadratic programming problem. Furthermore, it is shown how the latter algorithm may be simplified for application to problems of this type.This work was supported by the National Science Foundation, Grant No. MCS-71-03341-AO4, and by the Office of Naval Research, Contract No. N00014-75-C-0267.  相似文献   

14.
A recently introduced graph-theoretic notion of signed hypergraph is studied. In particular, a structural characterization of balanced signed hypergraphs is given, and two optimization problems related to the balance property — the maximum balance and the minimum covering problems — are introduced and characterized. It is shown that both problems are NP-complete in general. Applications of the theory of signed hypergraphs to two VLSI optimization problems, namely via minimization and constrained logic encoding, are described.  相似文献   

15.
In this paper we propose an O(n 3 L) algorithm which is a modification of the path following algorithm [8] for a linear complementarity problem. The path following algorithm has to take a short step size in each iteration in order to bound the number of overall arithmetic operations by O(n 3 L). In practical computation, we can determine the step size adaptively. Mizuno, Yoshise, and Kikuchi [11] reported that such an adaptive algorithm required about O(L) iterations for some test problems. Here we show that we can use a rank one update technique in the adaptive algorithm so that the number of overall arithmetic operations is theoretically bounded by O(n 3 L).Research supported in part by the U.S. Army Research Office through the Mathematical Sciences Institute of Cornell University.Research supported in part by NSF grants ECS-8602534 and DMS-8904406 and ONR contract N-00014-87-K0212.  相似文献   

16.
Herein we consider the existence of solutions to second-order, two-point boundary value problems (BVPs) for systems of ordinary differential inclusions. Some new Bernstein-Nagumo conditions are presented that ensure a priori bounds on the derivative of solutions to the differential inclusion. These a priori bound results are then applied, in conjunction with appropriate topological methods, to prove some new existence theorems for solutions to systems of BVPs for differential inclusions. The new conditions allow of the treatment of systems of BVPs without growth restrictions.  相似文献   

17.
The purpose of this paper is to present a new primal extreme point algorithm for solving assignment problems which both circumvents and exploits degeneracy. The algorithm is based on the observation that the degeneracy difficulties of the simplex method result from the unnecessary inspection of alternative basis representations of the extreme points. This paper characterizes a subsetQ of all bases that are capable of leading to an optimal solution to the problem if one exists. Using this characterization, an extreme point algorithm is developed which considers only those bases inQ. Computational results disclose that the new algorithm is substantially more efficient than previously developed primal and primal-dual extreme point (simplex) methods for assignment problems.  相似文献   

18.
We describe a new potential function and a sequence of ellipsoids in the path-following algorithm for convex quadratic programming. Each ellipsoid in the sequence contains all of the optimal primal and dual slack vectors. Furthermore, the volumes of the ellipsoids shrink at the ratio , in comparison to 2(1) in Karmarkar's algorithm and 2(1/n) in the ellipsoid method. We also show how to use these ellipsoids to identify the optimal basis in the course of the algorithm for linear programming.Research supported by The U.S. Army Research Office through The Mathematical Sciences Institute of Cornell University when the author was visiting at Cornell.Research supported in part by National Science Foundation Grant ECS-8602534 and Office of Naval Research Contract N00014-87-K-0212.  相似文献   

19.
Extended Linear-Quadratic Programming (ELQP) problems were introduced by Rockafellar and Wets for various models in stochastic programming and multistage optimization. Several numerical methods with linear convergence rates have been developed for solving fully quadratic ELQP problems, where the primal and dual coefficient matrices are positive definite. We present a two-stage sequential quadratic programming (SQP) method for solving ELQP problems arising in stochastic programming. The first stage algorithm realizes global convergence and the second stage algorithm realizes superlinear local convergence under a condition calledB-regularity.B-regularity is milder than the fully quadratic condition; the primal coefficient matrix need not be positive definite. Numerical tests are given to demonstrate the efficiency of the algorithm. Solution properties of the ELQP problem underB-regularity are also discussed.Supported by the Australian Research Council.  相似文献   

20.
A branch-and-reduce approach to global optimization   总被引:4,自引:0,他引:4  
This paper presents valid inequalities and range contraction techniques that can be used to reduce the size of the search space of global optimization problems. To demonstrate the algorithmic usefulness of these techniques, we incorporate them within the branch-and-bound framework. This results in a branch-and-reduce global optimization algorithm. A detailed discussion of the algorithm components and theoretical properties are provided. Specialized algorithms for polynomial and multiplicative programs are developed. Extensive computational results are presented for engineering design problems, standard global optimization test problems, univariate polynomial programs, linear multiplicative programs, mixed-integer nonlinear programs and concave quadratic programs. For the problems solved, the computer implementation of the proposed algorithm provides very accurate solutions in modest computational time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号