首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The microstructure, charge transport and phonon vibration of polycrystalline samples of Li-doped La214 system have been studied by X-ray diffraction, resistivity and transmission infrared (IR) spectra. It is found that the doping of Li in La2Cu1−xLixOy (0x0.5) and La1.85+xSr0.15−xCu1−xLixOy shows different effects on the crystal structure and resistivity. The change of resistivity with Li doping can be interpreted based on the variation of carrier concentration and impurity scattering. The shift of two IR vibration modes around 512 and 683 cm−1, which are referred to the vibrations of apical oxygen and planar oxygen, is analyzed in detail. The change of the intensity for the mode around 683 cm−1 is interpreted in terms of the screened effect of charge carrier in CuO2 plane. The relation among crystal microstructure, carrier concentration, transport properties and phonon vibration is analyzed and discussed based on the experiment results.  相似文献   

3.
Enhancements of the low-field (LFMR) and high-field magnetoresistance (HFMR) were observed in the manganite system prepared by doping Nb2O5 into La0.67Sr0.33MnO3 powders. The maximum MR ratios at 77 K with H=1 T and 1 kOe are 30% and 20% for the 0.07 molar ratio doped sample, which are 1.7 times and 1.6 times as large as that for LSMO, respectively. An MR effect up to 6.5% was also found for the sample with x=0.03 at room temperature (RT). The spin-dependent tunneling and scattering at the interfaces of grain boundaries are responsible for the LFMR while the HFMR originates from a noncollinear spin structure in the surface layer. With increasing x, the Curie temperature (TC) decreases monotonically from 364 to 154 K while the temperature TP related to the peak resistivity decreases firstly to a minimum of 204 K (x=0.06) and then rises up to 240 K (x=0.1). There is a maximum resistivity ρ for the sample with x=0.06, which is higher than that for LSMO by five orders of magnitude. It is due to the enhancement of spin-dependent and independent scattering and tunneling effects on the interfaces of grain boundaries and inside the grains.  相似文献   

4.
X-ray powder diffraction, magnetic susceptibility and electrical resistivity measurements have been used to investigate the effect of Sn substitution in the Bi1.7Pb0.3Sr2Ca2(Cu3−xSnx1.2Oy system for different values of Sn concentrationx(0×1.33). The substitution of Sn is found to decrease the superconducting volume fraction of the 2223 phase. The 2212 phase is enhanced until it reaches a maximum at x=0.67. The system has a complete 2212 phase at x=0.88. An increase in the normal-state resistivity with a corresponding suppression of the temperature at which the resistivity goes to zero is observed with increasing x for the samples which are superconducting. The substitution of Sn probably causes a spatial disorder in the CuO2 planes, which in turn enhances the Coulomb interaction. Samples with x1.0 are found to be insulating.  相似文献   

5.
The temperature-composition (Tx) phase diagram and NFL characteristics in the electrical resistivity ρ(T), specific heat C(T), and magnetic susceptibility χ(T) at low temperatures for the systems U1−xMxPd2Al3 (M=Y,Th) are described. The Tx phase diagram, the NFL characteristics, and the underlying mechanism for the NFL behavior are distinctly different for M=Y3+ and Th4+, apparently reflecting the difference in valence of the M atom substituents, and suggesting that U is tetravalent in these two systems.  相似文献   

6.
We apply the muffin-tin effective medium approximation to calculate the temperature dependence of the resistivity and thermopower of amorphous and liquid metals. The results show unambiguously that a large resistivity is accompanied by a negative temperature coefficient, in agreement with the experimental situation. This behavior is shown to result from a pseudo-gap which opens in the one-particle spectrum due to strong scattering at the quasi zone boundary and which tends to close under an increase in temperature. In turn the thermopower is found to have non-trivial density and temperature dependences.  相似文献   

7.
Magnetic susceptibility, X-ray diffraction and resistivity measurements of the system Bi1.4Pb0.6Sr2Ca2−xGaxCu3Oy are reported for 0 x 2. The high-Tc 2223 phase with a Tc of 107 K for x = 0 exists for x 0.3. The low-Tc 2212 phase with a Tc of 75 K for x = 0 exists for the full range of x. The highest values of the critical temperature and the largest volume fraction of the low-Tc phase in compounds with Ga occur for x = 0.5 ± 0.1. The identification of CaO by X-ray diffraction for x 0.6 indicates that Ga replaces Ca in the compound.  相似文献   

8.
Fe/Fe1−xSix/Fe (x=0.4–1.0) wedge-type epitaxial trilayers with improved homogeneity are grown by co-evaporation from two electron-beam sources. The coupling strengths of the bilinear (J1) and biquadratic (J2) coupling terms are derived from Brillouin light scattering (BLS) spectra and longitudinal MOKE hysteresis loops. The total coupling strength J=J1+J2 increases dramatically with increasing x and reaches values in excess of 6 mJ/m2.  相似文献   

9.
白敏  宣荣喜  宋建军  张鹤鸣  胡辉勇  舒斌 《物理学报》2015,64(3):38501-038501
应变Ge材料因其载流子迁移率高, 且与硅工艺兼容等优点, 已成为硅基CMOS研究发展的重点和热点. 本文基于压应变Ge/(001)Si1-xGex价带结构模型, 研究了压应变Ge/(001)Si1-xGex空穴各散射概率、空穴迁移率与Ge组分(x)的关系, 包括空穴离化杂质散射概率、声学声子散射、非极性光学声子散射、总散射概率以及空穴各向同性、各向异性迁移率, 获得了有实用价值的相关结论. 本文量化模型可为应力致Ge改性半导体物理的理解及相关器件的研究设计提供有重要的理论参考.  相似文献   

10.
于震  郭宇  郑军  迟锋 《中国物理 B》2013,22(11):117303-117303
We study the thermoelectric effect in a small quantum dot with a magnetic impurity in the Coulomb blockade regime.The electrical conductance,thermal conductance,thermopower,and the thermoelectrical figure of merit(FOM)are calculated by using Green’s function method.It is found that the peaks in the electrical conductance are split by the exchange coupling between the electron entering into the dot and the magnetic impurity inside the dot,accompanied by the decrease in the height of peaks.As a result,the resonances in the thermoelectric quantities,such as the thermal conductance,thermopower,and the FOM,are all split,opening some effective new working regions.Despite of the significant reduction in the height of the electrical conductance peaks induced by the exchange coupling,the values of the FOM and the thermopower can be as large as those in the case of zero exchange coupling.We also find that the thermoelectric efficiency,characterized by the magnitude of the FOM,can be enhanced by adjusting the left–right asymmetry of the electrode–dot coupling or by optimizing the system’s temperature.  相似文献   

11.
Samples of Bi2Sr2Ca1−xPrxCu2Oy have been characterized by resistivity and thermoelectric power measurements. All metallic samples show superconductivity with a maximum Tc = 90 K at X = 0.2. The sample of x = 0.6 shows a crossover from hopping conduction at low temperature above Tc to metallic conduction at high temperature. For the metallic samples below x = 0.6, the results of thermoelectric power are well fitted by both of a phenomenological band spectrum model and the Nagaosa and Lee model.  相似文献   

12.
The effects of Fe-substitution of YBa2Cu3Oy have been investigated by means of Raman scattering, X-ray diffraction, resistivity and susceptibility measurements. A series of samples of YBa2(Cu1 − xFex)3Oy with different dopant concentration (0 x 0.15) has been prepared in two batches, the second set having undergone twice the heat and mechanical treatment used to produce the first batch. Considerable improvement in the superconducting transition temperature, Tc, is obtained upon reprocessing. A phase transformation from orthorhombic to tetragonal symmetry is observed for x=0.05 from the X-ray measurements in agreement with previous work. Using a micro-Raman technique, all five Ag vibrational modes have been measured and their dependence on Fe-concentration is analyzed. There are indications that iron substitutes for copper at both sites and that the structure is a mixture of orthorhombic and tetragonal microdomains for all x.  相似文献   

13.
The effect of Fe substitution for Co on direct current (DC) electrical and thermal conductivity and thermopower of Ca3(Co1−xFex)4O9 (x = 0, 0.05, 0.08), prepared by a sol–gel process, was investigated in the temperature range from 380 down to 5K. The results indicate that the substitution of Fe for Co results in an increase in thermopower and DC electrical resistivity and substantial (14.9–20.4% at 300K) decrease in lattice thermal conductivity. Experiments also indicated that the temperature dependence of electrical resistivity ρ for heavily substituted compounds Ca3(Co1−xFex)4O9 (x = 0.08) obeyed the relation lnρT−1/3 at low temperatures, T < ~55K, in agreement with Mott’s two-dimensional (2D) variable range hopping model. The enhancement of thermopower and electrical resistivity was mainly ascribed to a decrease in hole carrier concentration caused by Fe substitution, while the decrease of thermal conductivity can be explained as phonon scattering caused by the impurity. The thermoelectric performance of Ca3Co4O9 was not improved in the temperature range investigated by Fe substitution largely due to great increase in electrical resistivity after Fe substitution.  相似文献   

14.
We report on direct measurements of the impurity band hole polarization in the diluted magnetic semiconductor (Ga,Mn)As. The polarization of impurity band holes in a magnetic field is strongly enhanced by antiferromagnetic exchange interaction with Mn ions. The temperature dependence of the hole polarization shows a strong increase of this polarization below the Curie temperature. We show that the ground state of the impurity band is formed by uniaxial stress split F=+/-1 states of antiferromagnetically coupled Mn ions (S=5/2) and valence band holes (J=3/2). The gap between the Mn acceptor related impurity band and the valence band is directly measured in a wide range of Mn content.  相似文献   

15.
We report on extensive experimental investigations of a single crystal of the orthorhombic uranium compound UCoGe. Bulk measurements on as-grown and annealed single crystals, recording magnetization, magnetic susceptibility, electrical resistivity, magnetoresistivity, thermopower, thermal conductivity and heat capacity data do not reproduce the previously reported coexistence of ferromagnetism with superconductivity. The latter phenomenon was only observed for the annealed sample at T SC = 0.65 K. New observations show a crossover at around 13 K, visible in thermal and transport measurements as well as the coherent state around 50 K, signaled by a wide knee in ρ(T). Above this temperature, UCoGe exhibits a single-ion Kondo-like effect. The magnetoresistivity of the annealed single crystal increases negatively down to 4.2 K, reaching as a large value about ?27% at a field of 8 T. The latter may be interpreted in terms of fairly strong magnetic fluctuations existing in UCoGe at low temperatures.  相似文献   

16.
The temperature dependence of the electrical resistivity, the thermal conductivity and the thermopower of the cubic isostructural (GdxY1–x)Al2 series will be presented. The magnetic properties of this system are characterized by the existence of ferromagnetism for Gd concentrations x>0.3 while for low Gd contents cluster and spinglass behaviour is observed. The spin dependent scattering contribution to the transport phenomena has been obtained by comparing the experimental data of the magnetic compounds with those of the isostructural nonmagnetic YAl2. For the ferromagnetic concentration range and forT>T c (T c =Curie temperature) we revealed a temperature independent contribution to the electrical resistivity, a contribution with a temperature variation of 1/T to the thermal resistivity and a linear temperature dependence of this part to the thermopower. These results are in good agreement with the temperature dependence calculated by solving the linearized Boltzmann equation for this type of scattering processes.  相似文献   

17.
陈萝娜  刘叶烽  张继业  杨炯  邢娟娟  骆军  张文清 《物理学报》2017,66(16):167201-167201
采用熔融-淬火方法制备了Cu_(2.95)Ga_xSb_(1-x)Se_4(x=0,0.01,0.02和0.04)样品,系统地研究了Ga在Sb位掺杂对Cu_3SbSe_4热电性能的影响.研究结果表明,少量的Ga掺杂(x=0.01)可以有效提高空穴浓度,抑制本征激发,改善样品的电输运性能.掺Ga样品在625 K时功率因子达到最大值10μW/cm·K~2,比未掺Ga的Cu_(2.95)SbSe_4样品提高了约一倍.但是随着Ga掺杂浓度的进一步提高,缺陷对载流子的散射增强,同时载流子有效质量增大,导致载流子迁移率急剧下降.因此Ga含量增加反而使样品的电性能恶化.在热输运方面,Ga掺杂可以有效降低双极扩散对热导率的贡献,同时掺杂引入的点缺陷对高频声子有较强的散射作用,因此高温区的热导率明显降低.最终该体系在664 K时获得最大ZT值0.53,比未掺Ga的样品提高了近50%.  相似文献   

18.
We report experimental studies on enhancing the magnetoelectric (ME) coupling of Co4Nb2O9 by substituting the non-magnetic metal Mg for Co. A series of single crystal Co4−xMgxNb2O9 (x = 0, 1, 2, 3) with a single-phase corundum-type structure are synthesized using the optical floating zone method, and the good quality and crystallographic orientations of the synthesized samples are confirmed by the Laue spots and sharp XRD peaks. Although the Néel temperatures (TN) of the Mg substituted crystals decrease slightly from 27 K for pure Co4Nb2O9 to 19 K and 11 K for Co3MgNb2O9 and Co2Mg2Nb2O9, respectively, the ME coupling is doubly enhanced by Mg substitution when x = 1. The ME coefficient αME of Co3MgNb2O9 required for the magnetic field (electric field) control of electric polarization (magnetization) is measured to be 12.8 ps/m (13.7 ps/m). These results indicate that the Mg substituted Co4−xMgxNb2O9 (x = 1) could serve as a potential candidate material for applications in future logic spintronics and logic devices.  相似文献   

19.
We have measured the resistivity, magnetoresistance, and thermopower of ceramic manganite samples La1 ? x Ag y MnO3 (yx) doped with silver as functions of temperature (4.2–350 K) and magnetic field (up to 26 kOe). A metal-insulator phase transition is observed in all investigated samples at temperatures close to room temperature. The behavior of the resistivity and thermopower in the high-temperature paramagnetic region is interpreted using the concept of small radius polaron; the activation energy decreases with increasing doping level. The resistivity in the low-temperature ferromagnetic region is approximated by the expression ρFM(T) = ρ0 + AT 2 + BT 4.5 presuming the existence of electron-electron and electron-magnon interactions. A resistivity minimum and a strong magnetoresistive effect are observed at low temperatures. The latter effect is associated with scattering of charge carriers at grain boundaries, which are antiferromagnetically ordered relative to one another. The temperature dependence of thermopower in the magnetically ordered phase is described in the framework of a model taking into account the drag of charge carriers by magnons.  相似文献   

20.
Magnetization versus applied field data have been taken up to 5 T over a wide temperature range from 10 K to 77 K for polycrystalline YBa2Cu3Ox with x=6.98 and x=6.62. The intragrain critical current density has been calculated based on the magnetization measurements. The observed temperature dependence of the flux pinning behavior in the x=6.98 sample indicates a new pinning mechanism in the intermediate temperature region, whose strength increases linearly with the applied field above certain field values. The experimental results also suggest that the twin boundary pinning is active only in the low temperature region.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号