首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 463 毫秒
1.
Binding energies of a charged exciton as a function of well width of a GaAs/GaAlAs corrugated quantum well are investigated. The calculations have been performed by the variational method based on a two parametric trial wave function within a single band effective mass approximation. We have also included the effect of nonparabolicity of the conduction band of GaAs. We study the spectral dependence of the charged exciton in a GaAs/GaAlAs corrugated quantum well as a function of well width. The photoionization cross section for the charged exciton placed at the center of the quantum well is computed as a function of normalized photon energy. The cross-section behavior as a function of incident energy is entirely different in the two cases of radiation being x-direction (along the growth direction) or z-direction. The interband emission energy as a function of well width is calculated and the dependence of the photoionization cross section on photon energy is carried out for the charged excitons. The resulting spectra are brought out for light polarized along and perpendicular to the growth direction. The results show that the charged exciton binding energy, interband emission energy and the photoionization cross section depend strongly on the well width. Our results are compared with the other existing literature available.  相似文献   

2.
Binding energies of intrawell and interwell excitons are investigated in a GaAs/GaAlAs double quantum well system in the presence of hydrostatic pressure applied in the z-direction. Calculations have been carried out with the variational technique within the single band effective mass approximations using a two parametric trial wave function. The interband emission energy as a function of well width is calculated in the influence of pressure. The pressure dependent photoionization cross section for a charged exciton placed at the center of the quantum well is computed as a function of normalized photon energy. The dependence of the photoionization cross section on photon energy is carried out for the charged excitons. The resulting spectra are brought out for light polarized along and perpendicular to the growth direction. The results show that the charged exciton binding energy, interband emission energy and the photoionization cross section depend strongly on the well width and the hydrostatic pressure. Our results are compared with the other existing literature available.  相似文献   

3.
Magnetic field induced exciton binding energy is investigated in a strained InAs/GaAs quantum wire within the framework of single band effective mass approximation. The strain contribution to the potential is determined through deformation potentials. The interband emission energy of strained InAs/GaAs wire is investigated in the influence of magnetic field with the various structural parameters. Magnetic field induced photoionization cross section of the exciton is studied. The total optical absorption and the refractive index changes as a function of normalized photon energy between the ground and the first excited state in the presence of magnetic field are analyzed. The optical absorption coefficients and the refractive index changes strongly depend on the incident optical intensity and the magnetic field. The occurred blueshift of the resonant peak due to the magnetic field will give the information about the variation of two energy levels in the quantum well wire. The optical absorption coefficients and the refractive index changes are strongly dependent on the incident optical intensity and the magnetic field.  相似文献   

4.
Within the effective-mass approximation, we have investigated the influence of a strong magnetic field on the ground state binding energy and the photon energy dependence of the photoionization cross-section of a shallow donor impurity in a quasi-one-dimensional rectangular quantum wire with infinite and finite potential barriers, using a variational approach. It is found that the binding energy and the photoionization cross-section as a function of photon energy were drastically dependent on the sizes of the wire, the potential well heights and the applied magnetic field.  相似文献   

5.
The effect of electric field on the binding energy, interband emission energy and the non-linear optical properties of exciton as a function of dot radius in an InSb/InGaxSb1?x quantum dot are investigated. Numerical calculations are carried out using single band effective mass approximation variationally to compute the exciton binding energy and optical properties are obtained using the compact density matrix approach. The dependence of the nonlinear optical processes on the dot sizes is investigated for various electric field strength. The linear, third order non-linear optical absorption coefficients, susceptibility values and the refractive index changes of electric field induced exciton as a function of photon energy are obtained. It is found that electric field and the geometrical confinement have great influence on the optical properties of dots.  相似文献   

6.
在有效质量近似下,考虑到外电场的影响,详细研究了直接带隙Ge/GeSi量子阱中带间光跃迁吸收系数和阈值能量随量子阱阱宽,外电场强度的变化情况。结果表明:随着外电场的增强,带间光跃迁吸收强度会逐渐减弱,阈值能量减小,吸收曲线向低能方向移动,出现了红移现象。此外,当量子阱比较大时,外电场对量子阱中带间光跃迁阈值能量的影响更加明显。  相似文献   

7.
Exciton binding energy of a confined heavy hole exciton is investigated in a Zn1−xMgxS/ZnS/Zn1−xMgxS single strained quantum well with the inclusion of size dependent dielectric function for various Mg content. The effects of interaction between the exciton and the longitudinal optical phonon are brought out. The effect of exciton is described by the effective potential between the electron and hole. The interband emission energy as a function of well width is calculated for various Mg concentration with and without the inclusion of dielectric confinement. Non-linear optical properties are carried out using the compact density matrix approach. The dependence of nonlinear optical processes on the well width is investigated for different Mg concentration. The linear, third order non-linear optical absorption coefficients values and the refractive index changes of the exciton are calculated for different concentration of magnesium content. The results show that the exciton binding energy is found to exceed LO phonon energy of ZnS for x>0.2 and the incorporation of magnesium ions and the effect of phonon have great influence on the optical properties of ZnS/Zn1−xMgxS quantum wells.  相似文献   

8.
Within the framework of the effective-mass and envelope function theory, exciton states and optical properties in wurtzite (WZ) InGaN/GaN quantum wells (QWs) are investigated theoretically considering the built-in electric field effects. Numerical results show that the built-in electric field, well width and in composition have obvious influences on exciton states and optical properties in WZ InGaN/GaN QWs. The built-in electric field caused by polarizations leads to a remarkable reduction of the ground-state exciton binding energy, the interband transition energy and the integrated absorption probability in WZ InGaN/GaN QWs with any well width and In composition. In particular, the integrated absorption probability is zero in WZ InGaN/GaN QWs with any In composition and well width L > 4 nm. In addition, the competition effects between quantum confinement and the built-in electric field (between quantum size and the built-in electric field) on exciton states and optical properties have also been investigated.  相似文献   

9.
We calculate the exciton binding energy and interband optical absorption in a rectangular coupled quantum wire under the hydrostatic pressure in the effective-mass approximation, using the variational approach. It is found that the interband optical absorption strongly depend on the hydrostatic pressure and the coupling parameter, and that the magnitude of the absorption coefficient for the HH1-E1 transition in the coupled quantum wire is larger than that of the single quantum wire.  相似文献   

10.
Exciton states and optical properties in wurtzite (WZ) InGaN/GaN quantum well (QW) are investigated theoretically, considering finite barrier width and built-in electric field effects. Numerical results show that when the barrier width increases, the ground-state exciton binding energy, the interband transition energy and the integrated absorption probability increase first and then they are insensitive to the variation of the barrier width. For any barrier width, the ground-state exciton binding energy and the integrated absorption probability have a maximum when the well width is 1 nm; moreover, the integrated absorption probability goes to zero when the well width is larger than 6 nm. In addition, the competition effects between the built-in electric field and quantum confinement are also investigated in the WZ InGaN/GaN QW.  相似文献   

11.
The coefficient of interband absorption of a weak electromagnetic wave by quantum wires in a transverse magnetic field and an intense laser radiation field is calculated. It is shown that, if the laser radiation frequency is equal either to the size quantization frequency (dimensional infrared resonance) or to a hybrid frequency (magnetoinfrared resonance), laser illumination can determine the shape of absorption oscillations. In particular, it is shown that the second magnetoabsorption peak is split into two peaks, the half-widths of which and the distance between which depend on the intensity of resonance laser radiation. The influence of the polarization of IR radiation on the interband absorption in quantum wires is discussed. The dynamics of the frequency dependence of the optical absorption coefficient with increasing intensity of resonance laser radiation is studied.  相似文献   

12.
在有效质量近似下,详细研究了直接带隙Ge/GeSi耦合双量子阱中带间光跃迁吸收系数和阈值能量随量子阱结构参数的变化情况。结果表明:随着量子阱阱宽增大,带间光跃迁吸收强度会逐渐减弱,阈值能量减小,吸收曲线向低能方向移动,出现了红移现象。增强耦合量子阱间的耦合效应使得带间光吸收强度显著提升。此外,与非对称耦合量子阱相比,耦合效应对对称耦合量子阱中光吸收系数的影响更为显著。  相似文献   

13.
在有效质量近似下,详细研究了直接带隙Ge/Ge Si耦合双量子阱中带间光跃迁吸收系数和阈值能量随量子阱结构参数的变化情况.结果表明:随着量子阱阱宽增大,带间光跃迁吸收强度会逐渐减弱,阈值能量减小,吸收曲线向低能方向移动,出现了红移现象.增强耦合量子阱间的耦合效应使得带间光吸收强度显著提升.此外,与非对称耦合量子阱相比,耦合效应对对称耦合量子阱中光吸收系数的影响更为显著.  相似文献   

14.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1−xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

15.
Numerical calculations of the excitonic absorption spectra in a strained CdxZn1?xO/ZnO quantum dot are investigated for various Cd contents. We calculate the quantized energies of the exciton as a function of dot radius for various confinement potentials and thereby the interband emission energy is computed considering the internal electric field induced by the spontaneous and piezoelectric polarizations. The optical absorption as a function of photon energy for different dot radii is discussed. Decrease of exciton binding energy and the corresponding optical band gap with the Cd concentration imply that the confinement of carriers decreases with composition x. The main results show that the confined energies and the transition energies between the excited levels are significant for smaller dots. Non-linearity band gap with the increase in Cd content is observed for smaller dots in the strong confinement region and the magnitude of the absorption spectra increases for the transitions between the higher excited levels.  相似文献   

16.
The effects of hydrostatic pressure on the exciton ground-state binding energy and the interband emission energy in a GaN/Al x Ga1??? x N quantum dot are investigated. The effects of strain and the internal field due to spontaneous and piezo-electric polarizations are included in the Hamiltonian. Numerical calculations are performed using variational procedure within the framework of single-band effective-mass approximation. The dependence of non-linear optical processes on the dot sizes is brought out in the influence of pressure. Pressure-induced optical properties are obtained using the compact density matrix approach. The effects of hydrostatic pressure on the linear, third-order non-linear optical absorption coefficients and the refractive index changes of the exciton as a function of photon energy are calculated. Our results show that the effects of pressure and the geometrical confinement have great influence on the optical properties of GaN/Al x Ga1??? x N dot.  相似文献   

17.
The effects of intense high-frequency laser field on photoionization cross-section and binding energy of shallow-donor impurities in GaAs/GaAlAs quantum dots are calculated using variational method with the effective-mass approximation. From these calculations, it has been concluded that the dependences of the impurity binding energy and photoionization cross-section on the intense laser field are very significant.  相似文献   

18.
The binding energy of an exciton in a wurtzite GaN/GaAlN strained cylindrical quantum dot is investigated theoretically.The strong built-in electric field due to the spontaneous and piezoelectric polarizations of a GaN/GaAlN quantum dot is included.Numerical calculations are performed using a variational procedure within the single band effective mass approximation.Valence-band anisotropy is included in our theoretical model by using different hole masses in different spatial directions.The exciton oscillator strength and the exciton lifetime for radiative recombination each as a function of dot radius have been computed.The result elucidates that the strong built-in electric field influences the oscillator strength and the recombination life time of the exciton.It is observed that the ground state exciton binding energy and the interband emission energy increase when the cylindrical quantum dot height or radius is decreased,and that the exciton binding energy,the oscillator strength and the radiative lifetime each as a function of structural parameters (height and radius) sensitively depend on the strong built-in electric field.The obtained results are useful for the design of some opto-photoelectronic devices.  相似文献   

19.
王文娟  王海龙  龚谦  宋志棠  汪辉  封松林 《物理学报》2013,62(23):237104-237104
在有效质量近似下采用变分法计算了InGaAsP/InP量子阱内不同In组分下的激子结合能,分析了结合能随阱宽和In组分的变化情况,并且讨论了外加电场对激子结合能的影响. 结果表明:激子结合能是阱宽的一个非单调函数,随阱宽的变化呈现先增加后减小的趋势;随着In组分增大,激子结合能达到最大值的阱宽相应变小,这与材料的带隙改变有关;在一定范围内电场的存在对激子结合能的影响很小,但电场强度较大时会破坏激子效应. 关键词: 激子 InGaAsP/InP量子阱 结合能 电场  相似文献   

20.
Within the effective-mass approximation, we have investigated the binding energies of donor impurities as a function of the wire dimensions and the photoionization cross-section for a hydrogenic donor impurity placed on the center of the quantum well-wire as a function of the normalized photon energy in the GaAs, Ge and Si quantum wires with infinite barriers. The calculations are performed by the variational method based on a two-parametric trial wave function. The results show that the impurity binding energy and the photoionization cross-section depend strongly on both wire dimensions and material parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号