首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 984 毫秒
1.
The application of multiple-stage ion-trap (IT) mass spectrometric methods for the structural characterization of cardiolipin (CL), a 1,3-bisphosphatidyl-sn-glycerol that consists of four fatty acyl chains and three glycerol backbones (designated as A, B, and central glycerol, respectively), as the sodiated adduct ions in the positive-ion mode was evaluated. Following collisionally activated dissociation (CAD), the [M - 2H + 3Na]+ ions of CL yield two prominent fragment ion pairs that consist of the phosphatidyl moieties attached to the 1'- and 3'-position of the central glycerol, respectively, resulting from the differential losses of the diacylglycerol moieties containing A and B glycerol, respectively. The results are consistent with those previously described for the [M - H]- and [M - 2H + Na]- ions in the negative-ion mode, thus permitting assignment of the two phosphatidyl moieties attached to the 1'- or 3'-position of the central glycerol. The identities of the fatty acyl substituents and their positions on the glycerol backbones (glycerol A and B) are deduced from further degradation of the above ion pairs that give the fragment ions reflecting the fatty acid substituents at the sn-1 (or sn-1') and sn-2 (or sn-2') positions. The ions that arise from losses of the fatty acid substituents at sn-1 and sn-1', respectively, are prominent, but the analogous ions from losses of the fatty acid substituents at sn-2 and sn-2', respectively, are of low abundance in the MS2 product-ion spectra. This feature further confirms the assignment of the positions of the fatty acid substituents. The similar IT multiple-stage mass spectrometric approaches including MS2 and MS3 for structural characterization of CL using its [M + Na]+ and the [M - H + 2Na]+ ions are also readily applicable. However, their uses for structural characterization are less desirable because formation of the [M + Na]+ and the [M - H + 2Na]+ ions for CL is not predictable.  相似文献   

2.
The structural determination of sn-1 and sn-2 hexadecanoic lysophosphatidylcholine (LPC) regioisomers was carried out using fast atom bombardment tandem mass spectrometry (FAB-MS/MS). The collision-induced dissociation (CID) of protonated and sodiated molecules produced diverse product ions due mainly to charge remote fragmentations. Based on the information obtained from the CID spectra of protonated and sodiated molecules, sn-1 and sn-2 hexadecanoic LPC isomers could be discriminated. Especially, the abundance ratio of the diagnostic ion pair [m/z 224/226] in the CID spectra of [M + H](+) ions was shown to be greatly different. Moreover, the CID-MS/MS spectra of sodium-adducted molecules for hexadecanoic LPC isomers showed characteristic product ions such as [M + Na - 103](+), [M + Na - 85](+), and [M + Na - 59](+), by which their regio-specificity can be differentiated.  相似文献   

3.
When collisionally activated dissociation (CAD) of glycerophosphocholine (GPC) species is examined using quadrupole ion trap mass spectrometry (QITMS), the spectral patterns differ from those obtained using sector or quadrupole mass spectrometry. Methods employed in the structural analysis of GPCs using a sector or quadrupole mass spectrometers are not necessarily useful for an ion trap mass spectrometer. A novel method is presented for structurally analyzing GPCs that involves the CAD of trifluoroacetic acid (TFA) adducts of kaliated GPCs. Solutions of GPCs in 0.1% TFA/methanol were electrosprayed to produce precursor ions by attaching a trifluoroacetic acid (TFA) molecule to a kaliated GPC molecule. The CAD-MS/MS spectra obtained by QITMS revealed a dramatic increase in the abundance of fragment ions, corresponding to the losses of sn-1 and sn-2 fatty acyl substituents. A preferential loss of the sn-1 fatty acyl group over the loss of the sn-2 fatty acyl group was observed among the GPC standards examined. A GPC extract from egg yolk was directly analyzed by this method without prior separation. The identities and positions of fatty acyl substituents of over 20 GPC species were identified. Some isomers present in very low relative abundance, which could not be analyzed by QITMS/MS using other ions as precursors, were identified by the TFA attachment method.  相似文献   

4.
A reversed-phase high-performance liquid chromatography (HPLC) method with on-line electrospray ionization/collision-induced dissociation/mass spectrometry (ESI/CID/MS) is presented for the regiospecific analysis of synthetic reference compounds of neutral ether lipids. The reference compounds were characterized by chromatographic retention times, full mass spectra, and fragmentation patterns as an aid to clarify the regiospecificity of ether lipids from natural sources. The results clearly show that single quadrupole mass spectroscopic analysis may elucidate the regiospecific structure of neutral ether lipids. Ether lipid reference compounds were characterized by five to six major ions in the positive ion mode. The 1-O-alkyl-sn-glycerols were analyzed as the diacetoyl derivative, and showed the [M - acetoyl](+) ion as an important diagnostic ion. The diagnostic ions of directly analyzed 1-O-alkyl-2-acyl-sn-glycerols and 1-O-alkyl-3-acyl-sn-glycerols were the [M - alkyl](+), [M + H - H(2)O](+) and [M + H](+) ions. Regiospecific characterization of the fatty acid position was evident from the relative ion intensities, as the sn-2 species had relatively high [M + H](+) ion intensities compared with [M + H - H(2)O](+), whereas the reverse situation characterized the sn-3 species. Furthermore, corresponding sn-2 and sn-3 species were separated by the chromatographic system. However, loss of water was promoted as fatty acid unsaturation was raised, which may complicate interpretation of the mass spectra. The diagnostic ions of directly analyzed 1-O-alkyl-2,3-diacyl-sn-glycerols were the [M - alkyl](+), [M - sn-2-acyl](+) and [M - sn-3-acyl](+) ions. Regiospecific characterization of the fatty acid identity and position was evident from the relative ion intensities, as fragmentation of the sn-2 fatty acids was preferred to the sn-3 fatty acids; however, loss of fatty acids was also promoted by higher degrees of unsaturation. Therefore, both structural and positional effects of the fatty acids affect the spectra of the neutral ether lipids. Fragmentation patterns and optimal capillary exit voltages are suggested for each neutral ether lipid class. The present study demonstrates that reversed-phase HPLC and positive ion ESI/CID/MS provide direct and unambiguous information about the configuration and identity of molecular species in neutral 1-O-alkyl-sn-glycerol classes.  相似文献   

5.
Characterisation of phospholipids was achieved using collision-induced dissociation (CID) with an ion-trap mass spectrometer. The product ions were compared with those obtained with a triple quadrupole mass spectrometer. In the negative ion mode the product ions were mainly sn-1 and sn-2 lyso-phospholipids with neutral loss of ketene in combination with neutral loss of the polar head group. Less abundant product ions were sn-1 and sn-2 carboxylate anions. CID using a triple quadrupole mass spectrometer, however, gave primarily the sn-1 and sn-2 carboxylate anions together with lyso-phosphatidic acid with neutral loss of water. For the ion trap a charge-remote-type mechanism is proposed for formation of the lyso-phospholipid product ions by loss of alpha-hydrogen on the fatty acid moiety, electron rearrangement and neutral loss of ketene. A second mechanism involves nucleophilic attack of the phosphate oxygen on the sn-1 and sn-2 glycerol backbone to form carboxylate anions with neutral loss of cyclo lyso-phospholipids. CID (MS(3) and MS(4)) of the lyso-phospholipids using the ion-trap gave the same carboxylate anions as those obtained with a triple quadrupole instrument where multiple collisions in the collision cell are expected to occur. The data demonstrate that phospholipid species determination can be performed by using LC/MS(n) with an ion-trap mass spectrometer with detection of the lyso-phospholipid anions. The ion-trap showed no loss in sensitivity in full scan MS(n) compared to multiple reaction monitoring data acquisition. In combination with on-line liquid chromatography this feature makes the ion-trap useful in the scanning modes for rapid screening of low concentrations of phospholipid species in biological samples as recently described (Uran S, Larsen A, Jacobsen PB, Skotland T. J. Chromatogr. B 2001; 758: 265).  相似文献   

6.
We described linear ion-trap mass spectrometric approaches applying MS(3) and MS(4) toward to the structural characterization of 1-O-alk-1'-enyl-2-acyl-, 1-O-alkyl-2-acyl-, and diacyl-glycerophospholipids (GPL) as the [M - H](-) ions desorbed by ESI in negative-ion mode. Further dissociation of the [lM - H - R(2)CO(2)H - polar head group](-) ions from the [M - H](-) ions of GPL that have undergone the consecutive losses of the fatty acid substituent at sn-2 and the polar head group readily gives the structural information of the radyl group at sn-1, resulting in structural differentiation among the 1-O-alk-1'-enyl-2-acyl-, 1-O-alkyl-2-acyl, and diacyl-glycerolphospholipid molecules. The distinction between a 1-O-alk-1'-enyl-2-acyl- and a 1-O-alkyl-2-acyl-GPL is based on the findings that the MS(3) (or MS(4)) spectrum of the [M - H - R(2)CO(2)H - polar head group](-) ion from the former compound is dominated by the alkenoxide anion that represents the radyl moiety at sn-1, while the spectrum from the latter compound is dominated by the ion at m/z 135 arising from further loss of the 1-O-alkyl group as an alcohol. Another important notion is that the optimal collision energy required for acquiring the former spectrum is significantly lower than that required for obtaining the latter spectrum. Using the approaches, we are able to reveal the structures of several isobaric isomers in GPL mixtures of biological origin. Because the [M - H](-) ions are readily formed by various GPL classes (except glycerophosphocholine) in the negative-ion mode, these mass spectrometric approaches should have broad application in the structural identification of GPLs.  相似文献   

7.
A liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) method using reversed-phase chromatography was developed for the analysis of phospholipids from bacterial extracts of a wild-type strain of Escherichia coli. Product ion mass spectra from [M--H](-) precursor ions allowed an identification of individual phospholipid species that includes both fatty acid composition and fatty acyl location on the glycerol backbone using diagnostic product ions. Thus, complete assignment, including sn-1/sn-2 fatty acyl position, was achieved for this strain of E. coli. In addition, the phospholipids were quantified relative to one another using an internal standard method.  相似文献   

8.
The pharmaceutical industry is interested in identifying novel target compounds. Due to their versatile pharmacological activities (e.g. antiviral, anti-carcinogen and immunosuppressive) sulfoquinovosyldiacylglycerides (SQDGs) are potential drug candidates. The present publication deals with the purification and structural characterization of SQDGs from three different strains of Phaeodactylum tricornutum. Besides detection of SQDGs (sn-1: C16:1/sn-2: C16:0 and sn-1: C20:5/sn-2: C16:0), two novel 2'-O-acylsulfoquinovosyldiacylglyerides (Ac-SQDGs, sn-1: C16:0/ sn-2: C16:0/2' C20:5 and sn-1: C20:5/sn-2: C16:0/2' C20:5) were identified by using matrix-assisted laser desorption/ionization (MALDI) QTrap time-of-flight (ToF) hybrid mass spectrometry (MS) with multistage MS(n). The analytical method enables the sn-position verification of fatty acids (MS(2)) as well as the confirmation of the regioposition of eicospentanoic acid at the sulfoquinovose (MS(3)).  相似文献   

9.
Lineloyl-palmitoyl (PLPC) and arachidonoyl-palmitoyl (PAPC) phosphatidylcholine were oxidized under Fenton reaction conditions (H2O2 and Fe2+), and the short-chain products formed were identified by electrospray ionization mass spectrometry (ESI-MS). The short-chain products resulted from beta-cleavage of oxygen-centered radicals and comprised aldehydes, hydroxyaldehydes and dicarboxylic acids that yielded both [MH]+ and [MNa]+ ions. The fragmentation of the [MH]+ and [MNa]+ ions of the peroxidation products was studied by tandem mass spectrometry (MS/MS). The MS/MS spectra of both ions showed ions resulting from characteristic losses of glycerophosphatidylcholine. Other product ions, resulting from C-C cleavages occurring in the vicinity of the functional group, and fragmentations involving the hydroxy groups, were the most informative since they allowed us to obtain structural information relating to the sn-2 acyl residue. Both fragmentation pathways are due to charge-remote fragmentation occurring by a 1,4-hydrogen elimination mechanism and/or by homolytic cleavage. Furthermore, the fragmentation pathway of some ions observed in the ESI-MS spectrum was not consistent with the fragmentation behavior expected for some of the short-chain species identified in the literature and allowed the reassignment of the ions as different structures. Isobaric ions were observed in the ESI-MS spectra of both oxidized phospholipids, and were differentiated based on distinct fragmentation. The detailed knowledge of lipid peroxidation degradation products is of major importance and should be very valuable in providing new markers for oxidative stress signaling and for disease states monitoring.  相似文献   

10.
GPC radical species formed during oxidation of a glycerophosphocholine (16:0/18:1) under the Fenton reaction conditions were detected using a spin trap, 5,5-dimethyl-1-pyrrolidine N-oxide (DMPO). The stable spin-trapped radical adducts were identified by mass spectrometry (MS) using electrospray (ES) as ionization method and characterized by tandem mass spectrometry (MS/MS). Radical adducts of oxidized free sn-2 fatty acid and of oxidized intact GPC, containing one, two and three additional oxygen atoms, were assigned. DMPO adducts of oxidized intact GPC were observed as singly and doubly charged ions in ES-MS, while adducts of oxidized free fatty acids were observed as singly charged ions. Oxidized free sn-2 fatty acids and intact GPC-DMPO adducts correspond to carbon- and oxygen-centered radicals that were identified by MS/MS as alkyl, hydroxy-alkyl, alkoxyl, hydroxy-alkoxyl, peroxyl and hydroperoxide-alkoxyl spin adducts. The DMPO molecule was attached predominantly at C(9) of the oleic chain. The fragmentation pathway of spin adducts with two DMPO molecules strongly suggests the presence of species that were simultaneously carbon- and oxygen-centered radicals. Several fragments identified are consistent with the presence of isomeric structures contributing to the same ions.  相似文献   

11.
A non-aqueous reversed-phase liquid chromatographic method coupled to electrospray ionisation (ESI) tandem mass spectrometry was developed for the analysis of triacylglycerols (TGs). The synthetic TGs studied were separated according to their equivalent carbon number with a gradient of methanol (containing 0.01% (v/v) formate adjusted to pH 5.3 with ammonia) and chloroform. ESI mass spectra of TGs yielded positive ion current signals for [M + NH(4)](+) and [M + NH(4)-RCOONH(4)](+). The mass spectra also showed signals believed to arise from [M + K](+). Collision-induced dissociation (CID) of the [M + NH(4)](+) precursor ion yielded [M + NH(4) - RCOONH(4)](+), [RCO + 74](+) and [RCO](+) product ions as aids for the structural elucidation of the TGs. In addition, [RCO - 18](+) and small amounts of [RCO - 2](+) product ions were also found. The latter ions were observed only for TGs containing unsaturated fatty acids. CID of ammoniated 1-stearoyl-2-oleoyl-3-linoleoyl-glycerol (18:0/18:1/18:2) indicated that neutral loss of the sn-2 fatty acid was energetically less favourable than loss of the fatty acid from the sn-1 or sn-3 position.  相似文献   

12.
We describe features of tandem mass spectra of lithiated adducts of triacylglycerol (TAG) species obtained by electrospray ionization mass spectrometry (ms) with low-energy collisionally activated dissociation (CAD) on a triple stage quadrupole instrument. The spectra distinguish isomeric triacylglycerol species and permit assignment of the mass of each fatty acid substituent and positions on the glycerol backbone to which substituents are esterified. Source CAD-MS2 experiments permit assignment of double bond locations in polyunsaturated fatty acid substituents. The ESI/MS/MS spectra contain [M + Li - (RnCO2H)]+, [M + Li - (RnCO2Li)]+, and RnCO+ ions, among others, that permit assignment of the masses of fatty acid substituents. Relative abundances of these ions reflect positions on the glycerol backbone to which substituents are esterified. The tandem spectra also contain ions reflecting combined elimination of two adjacent fatty acid residues, one of which is eliminated as a free fatty acid and the other as an alpha, beta-unsaturated fatty acid. Such combined losses always involve the sn-2 substituent, and this feature provides a robust means to identify that substituent. Fragment ions reflecting combined losses of both sn-1 and sn-3 substituents without loss of the sn-2 substituent are not observed. Schemes are proposed to rationalize formation of major fragment ions in tandem mass spectra of lithiated TAG that are supported by studies with deuterium-labeled TAG and by source CAD-MS2 experiments. These schemes involve initial elimination of a free fatty acid in concert with a hydrogen atom abstracted from the alpha-methylene group of an adjacent fatty acid, followed by formation of a cyclic intermediate that decomposes to yield other characteristic fragment ions. Determination of double bond location in polyunsaturated fatty acid substituents of TAG is achieved by source CAD experiments in which dilithiated adducts of fatty acid substituents are produced in the ion source and subjected to CAD in the collision cell. Product ions are analyzed in the final quadrupole to yield information on double bond location.  相似文献   

13.
The retina is one of the vertebrate tissues with the highest content in polyunsaturated fatty acids (PUFA). A large proportion of retinal phospholipids, especially those found in photoreceptor membranes, are dipolyunsaturated molecular species. Among them, dipolyunsaturated phosphatidylcholine (PC) molecular species are known to contain very-long-chain polyunsaturated fatty acids (VLC-PUFA) from the n-3 and n-6 series having 24-36 carbon atoms (C24-C36) and four to six double bonds. Recent interest in the role played by VLC-PUFA arose from the findings that a protein called elongation of very-long-chain fatty acids 4 (ELOVL4) is involved in their biosynthesis and that mutations in the ELOVL4 gene are associated with Stargardt-like macular dystrophy (STD3), a dominantly inherited juvenile macular degeneration leading to vision loss. The aim of the present study was to develop an HPLC-ESI-MS/MS method for the structural characterisation and the quantification of dipolyunsaturated PC molecular species containing VLC-PUFA and validate this methodology on retinas from bovines and human donors. Successful separation of phosphatidylethanolamine (PE), phosphatidylinositol (PI), phosphatidylserine (PS), PC, lyso-phosphatidylcholine (LPC) and sphingomyelin (SM) was achieved using a silica gel column and a gradient of hexane/isopropanol/water containing ammonium formate as a mobile phase. A complete structural characterisation of intact phosphatidylcholine species was obtained by collision-induced dissociation (CID) in the negative mode. Fatty acid composition and distribution can be clearly assigned based on the intensity of sn-2/sn-1 fragment ions. The PC species were characterised on bovine retina, 28 of which were dipolyunsaturated PC species containing one VLC-PUFA (C24-C36) with three to six double bonds. VLC-PUFA was always in the sn-1 position while PUFA at the sn-2 position was exclusively docosahexaenoic acid (DHA, C22:6n-3). Most of these VLC-PUFA-containing dipolyunsaturated PCs were detected and quantified in human retinas. The quantitative analysis of the different PC molecular species was performed in the positive mode using precursor ion scanning of m/z 184 and 14:0/14:0-PC and 24:0/24:0-PC as internal standards. The relationship between the MS peak intensities of different PC species and their carbon chain length was included for calibration. The main compounds represented were those having VLC-PUFA with 32 carbon atoms (C32:3, C32:4, C32:5 and C32:6) and 34 carbon atoms (C34:3, C34:4, C34:5 and C34:6). Dipolyunsaturated PCs with 36:5 and 36:6 were detected but in smaller quantities. In conclusion, this new HPLC-ESI-MS/MS method is sensitive and specific enough to structurally characterise and quantify all molecular PC species, including those esterified with VLC-PUFA. This technique is valuable for a precise characterisation of PC molecular species containing VLC-PUFA in retina and may be useful for a better understanding of the pathogenesis of STD3.  相似文献   

14.
We described a multiple-stage ion-trap mass spectrometric approach to characterize the structures of phosphatidylinositol and phosphatidyl-myoinositol mannosides (PIMs) in a complex mixture isolated from Mycobacterium bovis Bacillus Calmette Guérin. The positions of the fatty acyl substituents of PIMs at the glycerol backbone can be easily assigned, based on the findings that the ions arising from losses of the fatty acid substituent at sn-2 as molecules of acid and of ketene, respectively (that is, the [M - H - R(2)CO(2)H](-) and [M - H - R(2)CHCO](-) ions), are respectively more abundant than the ions arising from the analogous losses at sn-1 (that is, the [M - H - R(1)CO(2)H](-) and [M - H - R(1)CHCO](-) ions) in the MS(2) product-ion spectra of the [M - H](-) ions desorbed by electrospray ionization (ESI). Further dissociation of the [M - H - R(2)CO(2)H](-) and [M - H - R(1)CO(2)H](-) ions gives rise to a pair of unique ions corresponding to losses of 74 and 56 Da (that is, [M - H - R(x)CO(2)H - 56](-) and [M - H - R(x)CO(2)H - 74](-) ions, x = 1, 2), respectively, probably arising from various losses of the glycerol. The profile of the ion-pair in the MS(3) spectrum of the [M - H - R(2)CO(2)H](-) ion is readily distinguishable from that in the MS(3) spectrum of the [M - H - R(1)CO(2)H](-) ion and thus the assignment of the fatty acid substituents at the glycerol backbone can be confirmed. The product-ion spectra of the [M - H](-) ions from 2-lyso-PIM and from 1-lyso-PIM are discernible and both spectra contain a unique ion that arises from primary loss of the fatty acid substituent at the glycerol backbone, followed by loss of a bicyclic glycerophosphate ester moiety of 136 Da. The combined structural information from the MS(2) and MS(3) product-ion spectra permit the complex structures of PIMs that consist of various isomers to be unveiled in detail.  相似文献   

15.
We have acquired multi-stage mass spectra (MSn) of four branched N-glycans derived from human serum IgG by matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometry (MALDI-QIT-TOF-MS) in order to demonstrate high sensitivity structural analysis. [M+H]+ and [M+Na]+ ions were detected in the positive mode. The detection limit of [M+Na]+ in MS/MS and MS3 measurements for structural analysis was found to be 100 fmol, better than that for [M+H]+. The [M+H]+ ions subsequently fragmented to produce predominantly a Y series of fragments, whereas [M+Na]+ ions fragmented to give a complex mixture of B and Y ions together with some cross-ring fragments. Three features of MALDI-QIT-CID fragmentation of [M+Na]+ were cleared by the analysis of MS/MS, MS3 and MS4 spectra: (1) the fragment ions resulting from the breaking of a bond are more easily generated than that from multi-bond dissociation; (2) the trimannosyl-chitobiose core is either hardly dissociated, easily ionized or it is easy to break a bond between N-acetylglucosamine and mannose; (3) the fragmentation by loss of only galactose from the non-reducing terminus is not observed. We could determine the existence ratios of candidates for each fragment ion in the MS/MS spectrum of [M+Na]+ by considering these features. These results indicate that MSn analysis of [M+Na]+ ions is more useful for the analysis of complicated oligosaccharide structures than MS/MS analysis of [M+H]+, owing to the higher sensitivity and enhanced structural information. Furthermore, two kinds of glycans, with differing branch structures, could be distinguished by comparing the relative fragment ion abundances in the MS3 spectrum of [M+Na]+. These analyses demonstrate that the MSn technology incorporated in MALDI-QIT-TOF-MS can facilitate the elucidation of structure of complex branched oligosaccharides.  相似文献   

16.
We have performed molecular dynamics simulations of a bilayer formed by the synthetic archaeal lipid, diphytanyl phosphatidylcholine, in NaCl electrolyte solution at four different concentrations (0-4 M) to investigate how structural and dynamic properties of the model archaeal membrane are changed due to the ionic strength of the solution. The archaeal lipid bilayer shows minor changes in their physical properties, indicating the unusual high stability of the membrane against salt, though small reductions of molecular area and lateral diffusion of the lipid are detected at the highest electrolyte concentration of 4 M. Sodium ions penetrate to the ether-rich region, where the ions are likely bound to the ether oxygen in the sn-1 chain rather than to that in the sn-2 chain. The observed salt bridges among two or three neighboring lipids account for the small reduction in the molecular area. The bound ions together with the counter (chloride) ions give rise to a diffusive electric double layer; as a result, the membrane dipole potential is slightly increased with increasing NaCl concentration.  相似文献   

17.
The utility of post-source decay (PSD) matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF-MS) was investigated for the structural analysis of phosphatidylcholine (PC). PC did not produce detectable negative molecular ion from MALDI, but positive ions were observed as both [PC+H](+) and [PC+Na](+). The PSD spectra of the protonated PC species contained only one fragment corresponding to the head group (m/z 184), while the sodiated precursors produced many fragment ions, including those derived from the loss of fatty acids. The loss of fatty acid from the C-1 position (sn-1) of the glycerol backbone was favored over the loss of fatty acid from the C-2 position (sn-2). Ions emanating from the fragmentation of the head group (phosphocholine) included [PC+Na-59](+), [PC+Na-183](+) and [PC+Na-205](+), which corresponded to the loss of trimethylamine (TMA), non-sodiated choline phosphate and sodiated choline phosphate, respectively. Other fragments reflecting the structure of the head group were observed at m/z 183, 146 and 86. The difference in the fragmentation patterns for the PSD of [PC+Na](+) compared to [PC+H](+) is attributed to difference in the binding of Na(+) and H(+). While the proton binds to a negatively charged oxygen of the phosphate group, the sodium ion can be associated with several regions of the PC molecule. Hence, in the sodiated PC, intermolecular interaction of the negatively charged oxygen of the phosphate group, along with sodium association at multiple sites, can lead to a complex and characteristic ion fragmentation pattern. The preferential loss of sn-1 fatty acid group could be explained by the formation of an energetically favorable six-member ring intermediate, as apposed to the five-member ring intermediate formed prior to the loss of sn-2 fatty acid group.  相似文献   

18.
The demand for clinical toxicology analytical methods for identifying drugs of abuse and medicinal drugs is steadily increasing. Structural elucidation of amino amide‐type local anesthetic drugs and their main metabolites by GC‐EI‐MS and LC‐ESI‐MS/MS is of great analytical challenge. These compounds exhibit only/mostly fragments/product ions representing the amine‐containing residue, while the aromatic amide moiety remains unidentified. This task becomes even more complicated when discrimination between positional isomers of such compounds is required. Here, we report the development of a derivatization procedure for the differentiation and structural elucidation of a mixture of local anesthetic drugs and their metabolites that possess tertiary and secondary amines in water and urine. A method based on two sequential “in‐vial” instantaneous derivatization processes at ambient temperature followed by LC‐ESI‐MS/MS analysis was developed. 2,2,2‐Trichloro‐1,1‐dimethylethyl chloroformate (TCDMECF) was utilized to selectively convert the secondary amines into their carbamate derivatives, followed by hydrogen peroxide addition to produce the corresponding tertiary amine oxides. The resulting derivatives exhibited rich fragmentation patterns, enabling improved structural elucidation of the original compounds. The developed method was successfully applied to the differentiation and structural elucidation of prilocaine and its four positional isomers, which all possess similar GC and LC retention times and four of them exhibit almost identical EI‐MS and ESI‐MS/MS spectra, enabling their structural elucidation in a single LC‐ESI‐MS/MS analysis. The developed technique is fast and simple and enables discrimination between isomers based on different diagnostic ions/fragmentation patterns.  相似文献   

19.
Oligosaccharides were derivatized by reductive amination using 2-aminobenzamide (2-AB) and analyzed by matrix-assisted laser desorption/ionization two-stage time-of-flight (MALDI-TOF/TOF) tandem mass spectrometry (MS/MS) in the positive ion mode. The major signals were obtained under these conditions from the [M+Na]+ ions for all 2-AB-derivatized oligosaccharides. A systematic study was conducted on a series of 2-AB-derivatized oligosaccharides to allow rationalization of the fragmentation processes. The MALDI-TOF/TOF-MS/MS spectra of the [M+Na]+ ions of 2-AB-derivatized oligosaccharides were dominated by glycosidic cleavages. These fragments originating both from the reducing and the non-reducing ends of the oligosaccharide yield information on sequence and branching. Moreover, the MALDI-TOF/TOF-MS/MS spectra were also characterized by abundant cross-ring fragments which are very informative on the linkages of the monosaccharide residues constituting these oligosaccharides. MALDI-TOF/TOF-MS/MS analysis of 2-AB-derivatized oligosaccharides, by providing structural information at the low-picomole level, appears to be a powerful tool for carbohydrate structural analysis.  相似文献   

20.
Glycosphingolipids (GSLs) are major components of the outer leaflet of the cell membrane. These lipids are involved in many cell surface events and show disease‐related expression changes. GSLs could thus serve as useful targets for biomarker discovery. The GSL structure is characterized by two entities: a hydrophilic glycan and a hydrophobic ceramide moiety. Both components exhibit numerous structural variations, the combination of which results in a large diversity of GSL structures that can potentially exist. Mass spectrometry (MS) is a powerful tool for high‐throughput analysis of GSL expression analysis and structural elucidation. Yet, the assignment of GSL structures using MS data is tedious and demands highly specialized expertise. SysBioWare, a software platform developed for MS data evaluation in glycomics, was here applied for the MS analysis of human serum GSLs. The program was tuned to provide automated compositional assignment, supporting a variety of glycan and ceramide structures. Upon in silico fragmentation, the masses of predicted ions arising from cleavages in the glycan as well as the ceramide moiety were calculated, thus enabling structural characterization of both entities. Validation of proposed structures was achieved by matching in silico calculated fragment ions with those of experimental MS/MS data. These results indicate that SysBioWare can facilitate data interpretation and, furthermore, help the user to deal with large sets of data by supporting management of MS and non‐MS data. SysBioWare has the potential to be a powerful tool for high‐throughput glycosphingolipidomics in clinical applications. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号