首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Phosphatidylethanolamines (PEs) are one of the major constituents of cellular membranes, and, along with other phospholipid classes, have an essential role in the physiology of cells. Profiling of phospholipids in biological samples is currently done using mass spectrometry (MS). In this work we describe the MS fragmentation of sodium adducts of 2-oleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (POPE) and 2-linoleoyl-1-palmitoyl-sn-glycero-3-phosphatidylethanolamine (PLPE). This study was performed by electrospray ionization tandem mass spectrometry (ESI-MS/MS) using three different instruments and also by matrix-assisted laser desorption/ionization tandem mass spectrometry (MALDI-MS/MS). All MS/MS spectra show product ions related to the polar head fragmentation and product ions related to the loss of acyl chains. In ESI-MS/MS spectra, the product ions [M+Na-R1COOH-43]+ and [M+Na-R2COOH-43]+ show different relative abundance, as well as [M+Na-R1COOH]+ and [M+Na-R2COOH]+ product ions, allowing identification of both fatty acyl residues of PEs, and their specific location. MALDI-MS/MS shows the same product ions reported before and other ions generated by charge-remote fragmentation of the C3-C4 bond (gamma-cleavage) of fatty acyl residues combined with loss of 163 Da. These fragment ions, [M+Na-(R2-C2H3)-163]+ and [M+Na-(R1-C2H3)-163]+, show different relative abundances, and the product ion formed by the gamma-cleavage of sn-2 is the most abundant. Overall, differences noted that are important for identification and location of fatty acyl residues in the glycerol backbone are: relative abundance between the product ions [M+Na-R1COOH-43]+ > [M+Na-R2COOH-43]+ in ESI-MS/MS spectra; and relative abundance between the product ions [M+Na-(R2-C2H3)-163]+ > [M+Na-(R1-C2H3)-163]+ in MALDI-MS/MS spectra.  相似文献   

2.
Three glycerophosphatidylcholine (GPC) phospholipids (oleoyl-, linoleoyl- and arachidonoylpalmitoylphosphatidylcholine) were oxidized under Fenton reaction conditions (H(2)O(2) and Fe(2+)), and the long-chain oxidation products were detected by electrospray mass spectrometry (ES-MS) and characterized by ES-MS/MS. The intact oxidation products resulted from the insertion of oxygen atoms into the phospholipid structure. The tandem mass spectra of the [MNa](+) molecular ion showed, apart from the characteristic fragments of GPC, fragment ions resulting from neutral losses from [MNa](+), and combined with loss of 59 and 183 Da from [MNa](+). These ions resulted from cleavage of the bond near the hydroxy group by a charge-remote fragmentation mechanism, allowing its location to be pinpointed. The fragments thus formed reflected the positions of the double bonds and of the derivatives along the unsaturated fatty acid chain, giving very useful information, as they allowed the presence of structural isomers and positional isomers to be established. The identification of the fragment ion at m/z 163, which is 16 Da higher than the five-membered cyclophosphane ion (m/z 147), in some tandem mass spectra, is consistent with the oxidation of the phosphocholine head. Some ions were found to occur with the same m/z value; in two of the phospholipids and based on the MS/MS data, structural and positional isomers were differentiated. Our findings indicate that MS/MS is a valuable tool for the identification of the wide complexity of structural features occurring in oxidized phosphatidylcholines during lipid peroxidation in cellular membranes.  相似文献   

3.
Two mass spectrometers, in parallel, were employed simultaneously for analysis of triacylglycerols in canola oil, for analysis of triolein oxidation products, and for analysis of triacylglycerol positional isomers separated using reversed-phase high-performance liquid chromatography. A triple quadrupole mass spectrometer was interfaced via an atmospheric pressure chemical ionization (APCI) interface to two reversed-phase liquid chromatographic columns in series. An ion trap mass spectrometer was coupled to the same two columns using an electrospray ionization (ESI) interface, with ammonium formate added as electrolyte. Electrospray ionization mass spectrometry (ESI-MS) under these conditions produced abundant ammonium adduct ions from triacylglycerols, which were then fragmented to produce MS/MS spectra and then fragmented further to produce MS/MS/MS spectra. ESI-MS/MS of the ammoniated adduct ions gave product ion mass spectra which were similar to mass spectra obtained by APCI-MS. ESI-MS/MS produced diacylglycerol fragment ions, and additional fragmentation (MS/MS/MS) produced [RCO](+) (acylium) ions, [RCOO+58](+) ions, and other related ions which allowed assignment of individual acyl chain identities. APCI-MS of triacylglycerol oxidation products produced spectra like those reported previously using APCI-MS. APCI-MS/MS produced ions related to individual fatty acid chains. ESI-MS of triacylglycerol oxidation products produced abundant ammonium adduct ions, even for those molecules which previously produced little or no intact molecular ions under APCI-MS conditions. Fragmentation (MS/MS) of the [M+NH(4)](+) ions produced results similar to those obtained by APCI-MS. Further fragmentation (MS/MS/MS) of the diacylglycerol fragments of oxidation products provided information on the oxidized individual fatty acyl chains. ESI-MS and APCI-MS were found to be complementary techniques, which together contributed to a better understanding of the identities of the products formed by oxidation of triacylglycerols.  相似文献   

4.
When zotepine, an antipsychotic drug, was electrochemically oxidized using electrospray ionization mass spectrometry (ESI-MS) coupled with a microflow electrolytic cell, [M + 16 + H]+ (m/z 348), [M-H]+ (m/z 330) and [M-14 + H]+ (m/z 318) were observed as electrochemical oxidation product ions (M represents the zotepine molecule). Although a major fragment ion that was derived from the dimethyl aminoethyl moiety was observed only at m/z 72 in the collision-induced dissociation (CID) spectrum of zotepine, new fragments such as m/z 315 and 286 ions could be generated in the CID spectrum by combining electrochemical oxidation and CID. Since these fragments were relatively specific with high ion strength, it was thought that they would be useful for developing a sensitive LC-MS/MS assay. The S-oxide and N-demethylated products were detected by electrolysis assuring that a portion of P450 metabolites of zotepine could be mimicked by the electrochemistry/electrospray ionization mass spectrometry (EC/ESI-MS) system.  相似文献   

5.
Mass spectrometric methodology based on the combined use of positive and negative electrospray ionization, collision-induced dissociation (CID) and tandem mass spectrometry (MS/MS) has been applied to the mass spectral study of a series of six naturally occurring iridoids through in-source fragmentation of the protonated [M+H]+, deprotonated [M--H]- and sodiated [M+Na]+ ions. This led to the unambiguous determination of the molecular masses of the studied compounds and allowed CID spectra of the molecular ions to be obtained. Valuable structural information regarding the nature of both the glycoside and the aglycone moiety was thus obtained. Glycosidic cleavage and ring cleavages of both aglycone and sugar moieties were the major fragmentation pathways observed during CID, where the losses of small molecules, the cinnamoyl and the cinnamate parts were also observed. The formation of the ionized aglycones, sugars and their product ions was thus obtained giving information on their basic skeleton. The protonated, i.e. [M+H]+ and deprotonated [M--H]-, ions were found to fragment mainly by glycosidic cleavages. MS/MS spectra of the [M+Na]+ ions gave complementary information for the structural characterization of the studied compounds. Unlike the dissociation of protonated molecular ions, that of sodiated molecules also provided sodiated sugar fragments where the C0+ fragment corresponding to the glucose ion was obtained as base peak for all the studied compounds.  相似文献   

6.
A systematic study of the fragmentation pattern of N-diisopropyloxyphosphoryl (DIPP) dipeptide methyl esters in an electrospray ionization (ESI) tandem mass spectrometry (MS/MS) was presented. A combination of accurate mass measurement and tandem mass spectrometry had been used to characterize the major fragment ions observed in the ESI mass spectrum. It was found that the alkali metal ions acted as a fixed charge site and expelled the DIPP group after transferring a proton to the amide nitrogen. For all the N-phosphoryl dipeptide methyl esters, under the activation of a metal ion, the rearrangement product ion at m/z 163 was observed and confirmed to be the sodium adduct of phosphoric acid mono-isopropyl esters (PAIE), via a specific five-membered penta-co-ordinated phosphorus intermediate. However, no rearrangement ion was observed when a beta-amino acid was at the N-terminal. This could be used to develop a novel method for differentiating isomeric compounds when either alpha- or beta-amino acid are at the N-terminus of peptides. From the [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters (DIPP Xaa1 Xaa2 OMe), the peaks corresponding to the [M+Na Xaa1 C3H6]+ were observed and explained. The [M+Na]+ ESI-MS/MS spectra of N-phosphoryl dipeptide methyl esters with Phe located in the C-terminal, such as DIPPValPheOMe, DIPPLeuPheOMe, DIPPIlePheOMe, DIPPAlaPheOMe and DIPPPhePheOMe, had characteristic fragmentation. Two unusual gas-phase intramolecular rearrangement mechanisms were first proposed for this fragmentation. These rearrangements were not observed in dipeptide methyl ester analogs which did not contain the DIPP at the N-terminal, suggesting that this moiety was critical for the rearrangement.  相似文献   

7.
Linoleic acid radical products formed by radical reaction (Fenton conditions) were trapped using 5,5-dimethyl-1-pyrrolidine-N-oxide (DMPO) and analysed by reversed-phase liquid chromatography coupled to electrospray mass spectrometry (LC-MS). The linoleic acid radical species detected as DMPO spin adducts comprised oxidized linoleic acid and short-chain radical species that resulted from the breakdown of carbon and oxygen centred radicals. Based on the m/z values, the short-chain products were identified as alkyl and carboxylic acid DMPO radical adducts that exhibited different elution times. The ions identified as DMPO radical adducts were studied by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The LC-MS/MS spectra of linoleic acid DMPO radical adducts exhibited the fragment ion at m/z 114 and/or the loss of neutral molecule of 113 Da (DMPO) or 131 Da (DMPO + H2O), indicated to be DMPO adducts. The short-chain products identified allowed inference of the radical oxidation along the linoleic acid chain by abstraction of hydrogen atoms in carbon atoms ranging from C-8 to C-14. Other ions containing the fragment ion at m/z 114 in the LC-MS/MS spectra were attributed to DMPO adducts of unsaturated aldehydes, hydroxy-aldehydes and oxocarboxylic acids. The identification of aldehydic products formed by radical oxidation of linoleic acid peroxidation products, as short-chain product DMPO adducts, is a means of identifying lipid peroxidation products.  相似文献   

8.
Pregnane glycosides are a class of naturally occurring substances characterized by some interesting biological activities and widely distributed in the plant kingdom and in some marine organisms. Their toxicity and use in herbal drugs and folk medicines has generated great interest in the chemical characterization of these molecules. In the study reported here the potential of electrospray ionization mass spectrometry (ESI-MS) in the identification and structural characterization of pregnane glycosides was examined. ESI-MS/MS and ESI-MS(n) analyses were performed on 27 different compounds employing two mass spectrometers equipped with a triple-quadrupole or an ion-trap analyzer. The data illustrate the ability of the ESI techniques in the identification of pregnane glycosides, including the nature of the pregnane core, the kind of ester substituents, the types of sugar residues (hexose, deoxyhexose, dideoxyhexose, O-methyldeoxyhexose and O-methyldideoxyhexose), and the primary structure of the saccharide chain. From these data, a generalized fragmentation pathway was proposed by comparing the spectra acquired for all the compounds. Interestingly, similar results were obtained from the two instruments, thus demonstrating that detailed analyses of product ion spectra obtained using a triple-quadrupole mass spectrometer led to structural information comparable to those obtainable in MSn experiments using an ion trap. Different and complementary information was deduced by fragmenting the [M+H]+ or the [M+Na]+ ions, or the protonated aglycone [Agl+H]+ generated by in-source fragmentation. The present evidence clearly suggests that, in order to obtain a complete characterization of pregnane glycosides by MS, all three of these species should be accurately analyzed.  相似文献   

9.
Three cyclitol derivatives were isolated from the marine sponge Sarcotragus sp. by reversed-phase high-performance liquid chromatography and analyzed by fast-atom bombardment mass spectrometry (FAB-MS). Their structural elucidation was carried out with FAB tandem mass spectrometry (FAB-MS/MS). FAB-MS spectra produced a significant abundance of the sodium adducts [M+Na]+ and [M+2Na-H]+ from a mixture of m-NBA and NaI. In addition, trifluoroacetylation of the cyclitol derivatives was used for confirmation of the presence of the cyclitol ring. High abundance [M-5H+5CF3CO+Na]+ ions were observed in the FAB-MS spectra of the trifluoroacetyl-cyclitol derivatives. Collision-induced dissociation (CID) of the [M+Na]+ ions produced diverse product ions via a series of dissociative processes. Charge-remote fragmentation (CRF) patterns of [M+Na]+ ions were very useful for the identification of product ions which are characteristic for the cyclitol ring and long hydrocarbon chains substituted at the glycerol backbone. Moreover, the CID-MS/MS spectra of the [M+Na]+ ions yielded characteristic product ions at m/z 53, 83, 113, 155 and 171 for the cyclitol moiety, and at m/z 213, 229 and 245 for the glycerol backbone attached to the cyclitol ring.  相似文献   

10.
Electrospray ionization tandem mass spectral (ESI-MSn) analysis of thiodiglycol, bis(2-hydroxyethylthio)alkanes (BHETAs) and their mono-, di-, tri-, and tetraoxygenated compounds was carried out to obtain their characteristic spectra for ESI-MS analysis. These compounds are important markers of chemical warfare agents, namely sulfur mustards. ESI-MSn (n > or = 3) analysis of a compound by collisionally induced dissociation in an ion trap gives rise to mass spectra that are somewhat similar to electron ionization mass spectra. These ESI-MSn spectra can be used for compound identification. Under ESI-MS and ESI-MS/MS the compounds mostly produced [M+NH4]+, [M+H]+ and [M+H--H2O]+ ions. Fragmentations of these even-electron precursors in the ion trap gave rise to characteristic product ions via neutral loss of O2, H2O, C2H4, HCHO, C2H4O, C2H4S, HSC2H4OH and C2H4SO. Fragmentation routes of these compounds are proposed that rationalize the formation of product ions in ESI-MSn analysis.  相似文献   

11.
The structural elucidation of by-products arising from carbofuran photodegradation using a high-pressure UV lamp has been investigated by liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) employing a quadrupole time-of-flight mass spectrometer. Exact mass measurements of the [M + H]+ ions of the by-products and of product ions allowed the elemental formulae and related structures of seven photodegradation by-products (resulting, respectively, from photo-Fries rearrangement, hydroxylation of the benzene ring, oxidation of the 2,3-dihydrobenzofuran ring, cleavage of the carbamate group, hydrolysis of the ether group and the newly observed radical coupling and decarboxylation processes) to be determined confidently. Accurate mass measurements of product ions allowed ambiguities to be removed concerning neutral losses having the same nominal mass, namely CO and C2H4, allowing the fragmentation patterns to be rationalized.  相似文献   

12.
The anionic phospholipid cardiolipin (CL) is found almost exclusively in the inner membrane of mitochondria, playing an important role in energy metabolism. Oxidation of CL has been associated with apoptotic events and various pathologies. In this study, electrospray ionization mass spectrometry coupled with liquid chromatography (LC/ESI-MS) was used to identify tetralinoleoyl-cardiolipin (TLCL) modifications induced by the OH(·) radical generated under Fenton reaction conditions (H(2)O(2) and Fe(2+)). The identified oxidation products of TLCL contained 2, 4, 6 and 8 additional oxygen atoms. These long-chain oxidation products were characterized by LC/ESI-MS/MS as doubly [M-2H](2-) and singly charged [M-H](-) ions. A detailed analysis of the fragmentation pathways of these precursor ions allowed the identification of hydroperoxy derivatives of CL. MS/MS analysis indicated that CL oxidation products with 4, 6 and 8 oxygen atoms have one fatty acyl chain bearing 4 oxygen atoms ([RCOO+4O](-)). Even when the TLCL molecule was oxidized by the addition of eight oxygen atoms, one of the acyl chains remained non-modified and one fatty acyl chain contained three or four oxygen atoms. This led us to conclude that under oxidative conditions by the OH(·) radical, the distribution of oxygens/peroxy groups in the CL molecule is not random, even when CL has the same fatty acyl chains in all the positions. Using mass spectrometry, the oxidation products have been unequivocally assigned, which may be useful for their detection in biological samples.  相似文献   

13.
An isotopic modification of Sanger's method for identifying peptide N-termini has been developed to assist peptide sequencing by tandem mass spectrometry. Tryptic peptides, such as Val-His-Leu-Thr-Pro-Val-Glu-Lys, are derivatized with an equimolar mixture of 2,4-dinitrofluorobenzene and [2H3]2,4-dinitrofluorobenzene. Under optimized derivatization conditions, the alpha-amino group could be derivatized while the epsilon-amine of the lysine side chain and the imidazole of histidine remained underivatized. The alpha-dinitrophenyl modified peptides were characterized by electrospray ionization-tandem mass spectrometry (ESI-MS/MS) and liquid chromatography (LC)-ESI-MS. The [M + H]+ ions showed a doublet pattern with a delta m/z of 3 and the [M + 2H]2+ ions were recognized as doublets with a delta m/z of 1.5. MS/MS was employed where both isotopic [M + 2H]2+ ions were alternately subjected to collision-induced dissociation in the second quadrupole. Fragmentation in the ionization source generated identical product ion patterns that were observed during fragmentation in the second quadrupole. In the product ion mass spectra, the N-terminal a and b ions (no c ion observed) are doublets with a delta m/z of 3 or 1.5, while the C-terminal y and z ions (no x ion observed) are singlets appearing at identical masses. Thus, the product ions containing the N-terminus derivatized with a dinitrophenyl group are unequivocally distinguished from the product ions containing the C-terminus. The dinitrophenyl modification generally enhanced the production of a and b ions without diminishing y and z ion yields.  相似文献   

14.
A non-covalent-bonded dimer was detected in the positive ion electrospray ionisation (ESI) mass spectra of a synthetic impurity. In tandem mass spectrometry (MS/MS) experiments using collision-induced dissociation (CID), the ion was found to behave as a [M+H]+-type precursor ion for fragmentation until MS5. The dimer was probably formed through multi-hydrogen bonds over a proton bridge. When the fragmentation occurred at the center of the bridge, the dimer was broken apart to give monomer fragments at MS6. However, no corresponding deprotonated dimer [2M-H]- was found in the negative ion ESI spectra. The dimer was extremely stable, and it could still be observed when a fragmentation voltage of up to 50 V was applied in the ionisation source. The formation of the non-covalent dimer was also found to be instrument-dependent, but independent of sample concentration. Accurate mass measurements of the [2M+H]+ and [M+H]+ ions, and their MSn product ions, provided the basis for assessing the fragmentation mechanism proposed for [2M+H]+. The fragmentation pathway was also illustrated for the deprotonated molecule [M-H]-.  相似文献   

15.
Carotenoids have been implicated in protection of the eye from light-mediated photo-toxicity caused by free radicals. Under conditions of normal oxidative stress the carotenoids serve as protective antioxidants; however, when the oxidative stress exceeds the antioxidant capacity, carotenoids can be oxidized into numerous cleavage products. The determination and identification of oxidized carotenoids in biological samples remains a major challenge due to the small sample size and low stability of these compounds. We investigated the reaction of various zeaxanthin cleavage products with O-ethyl hydroxylamine to evaluate their levels in a biological sample. For this, a sensitive and specific electrospray tandem mass spectrometry (ESI-MS/MS) was developed, avoiding the classical lower sensitive and specific HPLC-UV and fluorescence absorption methods. Protonated molecules [M + H](+) of carotenoids upon collision-induced dissociation produced a number of structurally characteristic product ions. A series of complicated clusters of product ions differing in 14 (CH(2))and 26 (C(2)H(2))Da was characteristic of the polyene chain of intact carotenoids. All carotenoid ethyl oximes of zeaxanthin cleavage products were characterized by the losses of 60 and 61 Da in their MS/MS spectra. Through the application of the LC/MS/MS method, we identified two oxime derivatives of 3-hydroxy-beta-ionone and 3-hydroxy-14'-apocarotenal with protonated molecules at m/z 252 and m/z 370 respectively, in a human eye sample.  相似文献   

16.
Electron impact (EI), fast atom bombardment (FAB) and ammonia chemical ionization [CI(NH3)] mass spectrometry were applied with the aim of differentiating between the anomeric 1alpha- and 1beta-azidopentofuranosyl derivatives. Calculated ammonium affinities [AA(M)] and proton affinities [PA(M)] show that beta-anomers have higher affinities for H+ and NH4+ ions than alpha-azides. Protonated molecules, obtained by CI(NH3) of azidofuranosyl derivatives, lose HN3 giving abundant furanosyl (S+) ions. Ammonia solvation of MH+ ions competes with the previous reaction producing the [SNHN2NH3]+ ion, a competitive product to the ammonium-attached [SN3NH4]+ ion. The fragmentation pathways of the stable and metastable [MNH4]+, MH+ ions, and several other important fragment ions, were determined using mass analyzed ion kinetic energy spectrometry (MIKES). The abundance of the [SN3NH4]+ and/or [SNHN2NH3]+ ions was found to correlate inversely with the exothermicity of ammonia solvation of the MH+ ion. The abundance of the fragment ions [SNHNH3]+, [SNH3]+ and SNH+ in some examples correlates with the exothermicity of the corresponding [MNH4]+ and MH+ parent ion formation. The fragment ions SNH3+ and SNHNH3+ can be formed, at least in part, in the ammonia solvation reaction of the S+ and SNH+ ions taking place within the high-pressure region of the CI ion source.  相似文献   

17.
Five new monoacylglycerols (MAGs) were isolated from the marine sponge Stelletta sp. by reversed-phase high-performance liquid chromatography and analyzed by positive ion fast atom bombardment mass spectrometry (FAB-MS). FAB mass spectra of these compounds produced abundant sodium-adducted molecules [M+Na]+ from a mixture of 3-nitrobenzyl alcohol and sodium iodide. The structural elucidation of these sponge MAGs was carried out by FAB tandem mass spectrometry (MS/MS). To find diagnostic ions for the characterization of the MAGs, authentic MAGs were initially analyzed by collision-induced dissociation (CID) MS/MS. The CID MS/MS of [M+Na]+ precursor ions resulted in the formation of numerous characteristic product ions via a series of dissociative processes. The product ions formed by charge-remote fragmentation (CRF) provided important information for the characterization of acyl chains substituted at the glycerol backbone, and product ions at m/z 84, 97, 113 and 139 were diagnostic for the sodiated glycerol backbone. On the basis of these fragmentation patterns, the structures of five MAGs extracted from marine sponge were elucidated. In addition, high-resolution mass measurement was performed to obtain the elemental compositions of the MAGs.  相似文献   

18.
Porphyrin amino acid conjugates with one or two porphyrin units were analyzed by electrospray ionization tandem mass spectrometry (ESI-MS/MS). The ESI-MS spectra of all the porphyrins studied, obtained in positive ion mode, show the presence of the corresponding protonated molecule [M+H]+; ESI-MS spectra of diporphyrinyl compounds also show the doubly charged ions [M+2H]2+. The fragmentations of these ions induced by collision with argon were studied (ESI-MS/MS). ESI-MS/MS gives detailed structural information about the amino acids associated with the porphyrin. Cleavage of the bonds in the vicinity of the porphyrin moiety and those involving the side chain of amino acid residues gives structural information about this type of association. A fragmentation common to all derivatives corresponds to the cleavage of the phenyl-CO bond. The expected cleavage of the amide bond, that links the porphyrin to the amino acid moiety, is a minor fragmentation, which in some cases is even absent. The MS/MS spectra of the monoporphyrinyl derivatives show product ions characteristic of the amino acid linked to the porphyrin; the fragmentation also indicates when the amino acids has a terminal carboxylic group or a terminal ester group. The fragmentations of the diporphyrinyl compounds occur mainly by the cleavage of the spacer, leading, in the case of the doubly charged ions, to predominantly mono-charged ions, indicating a preferential location of the two protons in separated porphyrinic units.  相似文献   

19.
Electrospray mass spectrometry (ES-MS) was successfully employed for the structural differentiation of six isomeric trimethylfurocoumarins of possible pharmaceutical interest. Two different approaches were employed. The first was based on MS(n) experiments of MH(+) ions. Although the product ion spectra of MH(+) of the isomers are very similar, the MS(3) spectra of the collisionally generated [MH[bond]CO](+) ions show some characteristic differences. The second approach was based on complexation of the molecules with Li(+), Na(+) and K(+) using ESI-MS of sample solutions containing alkali ions in a 100:1 molar ratio with respect to the analyte. Significant differences were observed in complex production yields, and these were related to the dimension of the alkali ion and to the steric availability of chelating groups in the different isomers.  相似文献   

20.
Swertia chirata is a bitter plant, used in the Indian system of medicine (Ayurveda) for various human ailments. The bioactive constituents include the xanthone and secoiridoid glycosides consisting of mangiferin, amarogentin, amaroswerin, sweroside and swertiamarin. Methanolic extracts of S. chirata possess constituents with antidiabetic activities, which was investigated by high-performance liquid chromatography/electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS). Preliminary HPLC analyses were performed on a reversed-phase C18 column using gradient elution. In the LC/ESI-MS spectra, predominant [M+H]+ and [M+Na]+ ions were observed in positive ion mode and provided molecular mass information. The five components of S. chirata were structurally correlated and confirmed based on the fragmentation characteristics and information available in the literature. The fragmentation behavior of [M+H]+/[M+Na]+ ions of these components were deduced from the collision-induced dissociation (CID) spectra obtained from the selective on-column information-dependant acquisition (IDA) approach. Xanthone-C-glycoside showed characteristic fragment ions due to fragmentation in the C-glycosidic unit while iridoid-O-glycosides showed characteristic fragment ions due to cleavage in the glycoside linkage and retro-Diels-Alder (RDA) cleavage within an iridoid aglycone. Furthermore, on the basis of this information, an analytical assay was developed and validated to determine relative concentrations of mangiferin, amarogentin, amaroswerin, sweroside and swertiamarin. The detection was carried out using multiple reaction monitoring (MRM) in positive ionization mode with a total analysis time of 3.5 min. The method was successfully applied to standardize four different batches of herbal preparation on the basis of relative concentration of five bioactive components.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号