首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The propagation of waves in a non-linear cylindrical elastic membrane is considered when one end is fixed and the other is subjected to a dynamic extension and twist. The governing equations are derived for a hyperelastic material with a general strain energy function. In order to obtain specific results the equations are specialised to deal with neo-Hookian materials and in this case we show that there are three real wave speeds in each direction along the cylinder. Numerical results are given and a limiting case considered which provides a check on these results.  相似文献   

2.
Weakly non-linear plane waves are considered in hyperelastic crystals. Evolution equations are derived at a quadratically non-linear level for the amplitudes of quasi-longitudinal and quasi-transverse waves propagating in arbitrary anisotropic media. The form of the equations obtained depends upon the direction of propagation relative to the crystal axes. A single equation is found for all propagation directions for quasi-longitudinal waves, but a pair of coupled equations occurs for quasi-transverse waves propagating along directions of degeneracy, or acoustic axes. The coupled equations involve four material parameters but they simplify if the wave propagates along an axis of material symmetry. Thus, only two parameters arise for propagation along an axis of twofold symmetry, and one for a threefold axis. The transverse wave equations decouple if the axis is fourfold or higher. In the absence of a symmetry axis it is possible that the evolution equations of the quasi-transverse waves decouple if the third-order elastic moduli satisfy a certain identity. The theoretical results are illustrated with explicit examples.  相似文献   

3.
In the present work, we study the propagation of non-linear waves in an initially stressed thin elastic tube filled with an inviscid fluid. Considering the physiological conditions of the arteries, in the analysis, the tube is assumed to be subjected to a uniform inner pressure P0 and an axial stretch ratio λz. It is assumed that due to blood flow, a finite dynamical displacement field is superimposed on this static field and, then, the non-linear governing equations of the elastic tube are obtained. Using the reductive perturbation technique, the propagation of weakly non-linear waves in the longwave approximation is investigated. It is shown that the governing equations reduce to the Korteweg-deVries equation which admits a solitary wave solution. It is observed that the present model equations give two solitary wave solutions. The results are also discussed for some elastic materials existing in the literature.  相似文献   

4.
The analogy between the governing equations for the analysis of buckling in elastic structures and the elastodynamic equations of motion for wave propagation is presented. By employing this analogy, the exact and approximate buckling stresses of periodic layered materials and continuous fiber composites, respectively, are established. This is performed by utilizing micromechanically based dispersion relations for elastic wave propagating in the composite materials, which provide for a given wave length the corresponding phase velocity. By a specific change of variables in these dispersion relations, the corresponding buckling stresses can be determined. Results are presented and compared with solutions based on the mechanics of materials approach as well as with the well known Rosen’s fiber buckling predictions.  相似文献   

5.
Summary Two self-consistent schemes (effective medium method and effective field method) are applied to the problem of monochromatic elastic shear wave propagation through matrix composite materials containing cylindrical unidirected fibers. Dispersion equations of the mean wave field in such composites are derived by both methods. In the long-wave and short-wave ranges, analytical solutions of these equations are obtained and compared with each other, while numerical solutions are constructed for a wide range of frequencies. In particular, velocities and attenuation factors of the mean wave fields obtained by the two methods are compared for various volume concentrations, elastic properties and densities of inclusions in a wide range of frequencies of the incident field. The main discrepancies in the predictions made by the two methods are indicated, analyzed and discussed.  相似文献   

6.
The effective medium method (EMM) is applied to the solution of the problem of monochromatic elastic shear wave propagation through matrix composite materials reinforced with cylindrical unidirected fibers. The dispersion equations for the wave numbers of the mean wave field in such composites are derived using two different versions of the EMM. Asymptotic solutions of these equations in the long and short wave regions are found in closed analytical forms. Numerical solutions of the dispersion equations are constructed in a wide region of frequencies of the incident field that covers long, middle and short wave regions of the mean wave field. Velocities and attenuation factors of the mean wave fields in the composites obtained by different versions of the EMM are compared for various volume concentrations and properties of the inclusions. The main discrepancies in the predictions of different versions of the EMM are indicated, analyzed and discussed.  相似文献   

7.
The paper is focused on a homogenization procedure for the analysis of wave propagation in materials with periodic microstructure. By a reformulation of the variational-asymptotic homogenization technique recently proposed by Bacigalupo and Gambarotta (2012a), a second-gradient continuum model is derived, which provides a sufficiently accurate approximation of the lowest (acoustic) branch of the dispersion curves obtained by the Floquet–Bloch theory and may be a useful tool for the wave propagation analysis in bounded domains. The multi-scale kinematics is described through micro-fluctuation functions of the displacement field, which are derived by the solution of a recurrent sequence of cell BVPs and obtained as the superposition of a static and dynamic contribution. The latters are proportional to the even powers of the phase velocity and consequently the micro-fluctuation functions also depend on the direction of propagation. Therefore, both the higher order elastic moduli and the inertial terms result to depend by the dynamic correctors. This approach is applied to the study of wave propagation in layered bi-materials with orthotropic phases, having an axis of orthotropy parallel to the direction of layering, in which case, the overall elastic and inertial constants can be determined analytically. The reliability of the proposed procedure is analysed by comparing the obtained dispersion functions with those derived by the Floquet–Bloch theory.  相似文献   

8.
The work presented consists essentially of two parts: the first deals with the development of a non-linear constitutive equation for a three-dimensional viscoelastic material with instantaneous and time dependent compressibility; the second deals with the solution of some specific wave propagation problems for three simple three-dimensional geometries. The constitutive equation is based on the existence of elastic and creep potentials and is expressed in terms of single memory integrals with non-linear kernels. The wave propagation problems are solved by numerical integration along the characteristics of the governing equations. The primary conclusion drawn deals with the effect of time dependent compressibility on the dynamic stress, strain and velocity fields. Results indicate that the dynamic response of even slightly time dependent compressible materials varies dramatically from those assumed to have only an instantaneous elastic compressibility.  相似文献   

9.
Impact and wave propagation problems are considered for nonlinearly viscous and nonlinearly elastic materials. The governing partial differential equations are reduced to ordinary differential equations by means of similarity transformations. The resulting non-linear two point boundary value problems are then, in general, integrated numerically, although some closed form solutions are presented.  相似文献   

10.
11.
Governing equations of axisymmetric finite dynamic deformations of an incompressible, isotropic and elastic cylindrical shell made of Neo-Hookean materials are derived. The non-linear partial differential equations are simplified for the cases where all deformation variations along the thickness of the tube may be neglected. The simplified non-linear equations are then solved exactly to arrive at traveling wave solutions along the axis. These wave solutions are called controllable because they can be maintained by prescribable surface stresses, bounded amplitude and frequency of excitations alone.  相似文献   

12.
史杰  王砚 《应用力学学报》2020,(2):566-572,I0007
基于一维颗粒链中产生的高度非线性孤立波,研究孤立波与半无限复合材料体的耦合作用。根据赫兹定律推导了一维颗粒链中颗粒间相互作用的运动微分方程,建立了颗粒链与半无限复合材料体的接触模型。对于颗粒与复合材料的接触,采用已有文献中修正后的赫兹定律,研究了高度非线性孤立波与半无限复合材料体的耦合力学作用机理,推导了颗粒链与半无限复合材料体的相互耦合运动微分方程组,通过数值计算,得到了各颗粒的内力、速度、位移曲线。分析了材料属性对回弹孤立波出现的时间、幅值的影响。结果表明:随着纤维方向弹性模量的增大,次级回弹波出现的时间和波幅都逐渐增大,随着垂直纤维方向弹性模量的增大,次级回弹波出现的时间先减小后增大,次级回弹波的幅值逐渐减小直至消失。  相似文献   

13.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

14.
The propagation of axisymmetric free vibrations in an infinite homogeneous isotropic micropolar thermoelastic plate without energy dissipation subjected to stress free and rigidly fixed boundary conditions is investigated. The secular equations for homogeneous isotropic micropolar thermoelastic plate without energy dissipation in closed form for symmetric and skew symmetric wave modes of propagation are derived. The different regions of secular equations are obtained. At short wavelength limits, the secular equations for symmetric and skew symmetric modes of wave propagation in a stress free insulated and isothermal plate reduce to Rayleigh surface wave frequency equation. The results for thermoelastic, micropolar elastic and elastic materials are obtained as particular cases from the derived secular equations. The amplitudes of displacement components, microrotation and temperature distribution are also computed during the symmetric and skew symmetric motion of the plate. The dispersion curves for symmetric and skew symmetric modes and amplitudes of displacement components, microrotation and temperature distribution in case of fundamental symmetric and skew symmetric modes are presented graphically. The analytical and numerical results are found to be in close agreement.  相似文献   

15.
A boundary value problem connected with the propagation and growth of wave through a rod of second order elastic materials is studied. Two one-dimensional equations of motions are derived from the exact three dimensional equations which govern the torsional and longitudinal wave motions. The torsional wave does not grow at all while there is a distinct possibility for a compressive wave to grow into a shock. For Seth's stress strain relations the compressive wave grows into a shock while a tension wave decays.  相似文献   

16.
基于弹性波的多体散射理论和复变函数方法,利用波函数展开法和保角映射方法,研究了任意形纤维增强复合材料中剪切波的传播。根据相应的边界条件确定弹性波模式系数。给出了复合材料中基体区和纤维核区的波场。作为算例,分析了相同入射频率,不同纤维核的尺寸和形状的情况下,弹性波的传播特性。通过分析发现,低频长波区,弹性波以近似正弦函数的形式传播,纤维核的尺寸和形状对波场影响不明显;随着频率的增加,影响变得明显,大于一定的频率,纤维核的形状可明显地辨别出。最后对结果进行了分析讨论。  相似文献   

17.
非均匀损伤介质中波传播的数值解   总被引:2,自引:0,他引:2  
对弹性波在非均匀损伤介质中的传播理论进行了研究。通过将非均匀损伤区域离散成分层均匀的区域,结合相邻区域交界面处的连续条件,推导出了以右行波、左行波为状态向量的波动方程和传递矩阵。对几种非均匀损伤介质中波的传播进行了实例数值计算,并和其解析解的结果进行了比较,讨论了弹性波在非均匀损伤介质中传播的一般性质。  相似文献   

18.
19.
孔艳平  刘金喜 《力学学报》2015,47(3):493-502
研究了PMN-PT 压电层/弹性(金刚石) 基底结构中表面波的传播特性,压电层表面是机械自由的,电学边界条件分为电学开路和电学短路,压电层与基底之间采用理想连接. 得到了满足控制方程和边界条件的电弹场以及弹性波在结构中传播时的频散方程,通过数值算例分析了压电材料PMN-PT 的极化方向对弹性波频散曲线和机电耦合系数的影响,以及不同极化方向时弹性位移和电势随结构深度方向的变化,结果可为PMN-PT 压电材料在高频声表面波器件中的应用提供有价值的理论参考.   相似文献   

20.
In this paper, waves propagating in Mooney-Rivlin and neo-Hookean non-linear elastic materials subjected to a homogeneous pre-strain are considered. In a previous paper, Boulanger and Hayes [Finite-amplitude waves in deformed Mooney-Rivlin materials, Q. J. Mech. Appl. Math. 45 (1992) 575-593] showed, for deformed Mooney-Rivlin materials, that the superposition of two finite-amplitude shear waves polarized in different directions (orthogonal to each other) and propagating along the same direction is an exact solution of the equations of motion. The two waves do not interact. Here, we are interested in superpositions of waves propagating in different directions. Two types of superpositions are considered: superpositions of waves polarized in the same direction, and also superposition of waves polarized in different directions. It is shown that such superpositions are exact solutions of the equations of motion with appropriate choices of the propagation and polarization directions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号