首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
We demonstrate a strategy inspired by natural siderophores for the dissolution of platinum nanoparticles that could enable their size-selective synthesis, toxicological assessment, and the recycling of this precious metal. From the fabrication of electronics to biomedical diagnosis and therapy, PtNPs find increasing use. Mitigating concerns over potential human toxicity and the need to recover precious metal from industrial debris motivates the study of bio-friendly reagents to replace traditional harsh etchants. Herein, we report a family of redox-active siderophore-viz. π-acceptor azo aromatic ligands (L) that spontaneously ionize and chelate Pt atoms selectively from nanoparticles of size ≤6 nm. The reaction produces a monometallic diradical complex, PtII(L˙)2, isolated as a pure crystalline compound. Density functional theory provides fundamental insights on the size dependent PtNP chemical reactivity. The reported findings reveal a generalized platform for designing π-acceptor ligands to adjust the size threshold for dissolution of Pt or other noble metals NPs. Our approach may, for example, be used for the generation of Pt-based therapeutics or for reclamation of Pt nano debris formed in catalytic converters or electronic fabrication industries.

Biofriendly recycling of Pt is enabled by ligands that size-selectively dissolve nanoclusters.  相似文献   

2.
Electronic interactions can radically enhance the performance of supported metal catalysts and are critical for fundamentally understanding the nature of catalysts. However, at the microscopic level, the details of such interactions tuning the electronic properties of the sites on the metal particle''s surface and metal–support interface remain obscure. Herein, we found polarized electronic metal–support interaction (pEMSI) in oxide-supported Pd nanoparticles (NPs) describing the enhanced accumulation of electrons at the surface of NPs (superficial Pdδ) with positive Pd atoms distributed on the interface (interfacial Pdδ+). More superficial Pdδ species mean stronger pEMSI resulting from the synergistic effect of moderate Pd–oxide interaction, high structural fluxionality and electron transport activity of Pd NPs. The surface Pdδ species are responsible for improved catalytic performance for H2 evolution from metal hydrides and formates. These extensive insights into the nature of supported-metal NPs may open new avenues for regulating a metal particle''s electronic structure precisely and exploiting high-performance catalysts.

A new type of electronic effect, polarized metal-support interaction (pEMSI), in oxide-supported Pd nanoparticles describing the enhanced accumulation of electrons at the superficial surface is responsible for improved catalytic H2 evolution.  相似文献   

3.
Replacing the sluggish oxygen evolution reaction (OER) with oxidation reactions for the synthesis of complex pharmaceutical molecules coupled with enhanced hydrogen evolution reaction (HER) is highly attractive, but it is rarely explored. Here, we report an electrochemical protocol for selective oxidation of sulfides to sulfoxides over a CoFe layered double hydroxide (CoFe-LDH) anode in an aqueous-MeCN electrolyte, coupled with 2-fold promoted cathodic H2 productivity. This protocol displays high activity (85–96% yields), catalyst stability (10 cycles), and generality (12 examples) in selective sulfide oxidation. We demonstrate its applicability in the synthesis of four important pharmaceutical related sulfoxide compounds with scalability (up to 1.79 g). X-ray spectroscopy investigations reveal that the CoFe-LDH material evolved into amorphous CoFe-oxyhydroxide under catalytic conditions. This work may pave the way towards sustainable organic synthesis of valuable pharmaceuticals coupled with H2 production.

Replacing anodic OER with selective sulfide oxidation produces sulfoxide-related pharmaceutical compounds over a CoFe-LDH catalyst with enhanced HER, providing a sustainable protocol for valuable pharmaceuticals synthesis without external oxidants.  相似文献   

4.
A self-supported and flexible current collector solely made of earth-abundant elements, NiCo layered double hydroxide (LDH) wrapped around Cu nanowires (Cu-Ws) grown on top of commercially available Cu mesh (Cu-m), outperforms the benchmark 40 wt% Pt/C in catalyzing the electrochemical hydrogen evolution reaction (HER). The Cu-m/Cu-W/NiCo-LDH cathode operates both in acidic and alkaline media exhibiting high turnover frequencies (TOF) at 30 mV (0.3 H2 s−1 in 1 M KOH and 0.32 H2 s−1 in 0.5 M H2SO4, respectively) and minimal overpotentials of 15 ± 6 mV in 1 M KOH and 27 ± 2 mV in 0.5 M H2SO4 at −10 mA cm−2. Cu-m/Cu-W/NiCo-LDH outperforms the activity of 40 wt% Pt/C that needs overpotentials of 22 and 18 mV in 1 M KOH and 0.5 M H2SO4, respectively. With a tremendous advantage over Pt/C in triggering proton reduction with fast kinetics, similar mass activity and pH-universality, the current collector demonstrates outstanding operational durability even at above −1 A cm−2. The high density of electronic states near the Fermi energy level of Cu-Ws is found to be a pivotal factor for efficient electron transfer to the NiCo-LDH catalyst. This class of self-supported electrodes is expected to trigger rapid progress in developing high performance energy conversion and storage devices.

A flexible self-supported electrode made of earth-abundant elements, NiCo layered double hydroxide wrapped around Cu nanowires grown on Cu mesh, outperforms the benchmark 40 wt% Pt/C in catalyzing electrochemical hydrogen evolution reaction.  相似文献   

5.
We report the structural properties of ultra-small ThO2 and UO2 nanoparticles (NPs), which were synthesized without strong binding surface ligands by employing a covalent organic framework (COF-5) as an inert template. The resultant NPs were used to observe how structural properties are affected by decreasing grain size within bulk actinide oxides, which has implications for understanding the behavior of nuclear fuel materials. Through a comprehensive characterization strategy, we gain insight regarding how structure at the NP surface differs from the interior. Characterization using electron microscopy and small-angle X-ray scattering indicates that growth of the ThO2 and UO2 NPs was confined by the pores of the COF template, resulting in sub-3 nm particles. X-ray absorption fine structure spectroscopy results indicate that the NPs are best described as ThO2 and UO2 materials with unpassivated surfaces. The surface layers of these particles compensate for high surface energy by exhibiting a broader distribution of Th–O and U–O bond distances despite retaining average bond lengths that are characteristic of bulk ThO2 and UO2. The combined synthesis and physical characterization efforts provide a detailed picture of actinide oxide structure at the nanoscale, which remains highly underexplored compared to transition metal counterparts.

ThO2 and UO2 nanoparticles synthesized using a COF-5 template exhibit unpassivated surfaces and provide insight into nanoscale properties of actinides.  相似文献   

6.
We introduce the formation and characterization of heterometallic single-chain nanoparticles entailing both catalytic and luminescent properties. A terpolymer containing two divergent ligand moieties, phosphines and phosphine oxides, is synthesized and intramolecularly folded into nanoparticles via a selective metal complexation of Pt(ii) and Eu(iii). The formation of heterometallic Eu(iii)/Pt(ii) nanoparticles is evidenced by size exclusion chromatography, multinuclear NMR (1H, 31P{1H}, 19F, 195Pt) as well as diffusion-ordered NMR and IR spectroscopy. Critically, we demonstrate the activity of the SCNPs as a homogeneous and luminescent catalytic system in the amination reaction of allyl alcohol.

A bifunctional terpolymer containing two orthogonal ligand moieties was synthesized, giving way to the facile formation of heterometallic Eu(iii)/Pt(ii) single-chain nanoparticles, which display both catalytic and luminescent properties.  相似文献   

7.
Heterostructured nanomaterials, generally have physicochemical properties that differ from those of the individual components, and thus have potential in a wide range of applications. New platinum (Pt)/nickel bicarbonate (Ni(HCO3)2) heterostructures are designed for an efficient alkaline hydrogen evolution reaction (HER). Notably, the specific and mass activity of Pt in Pt/Ni(HCO3)2 are substantially improved compared to the bare Pt nanoparticles (NPs). The Ni(HCO3)2 provides abundant water adsorption/dissociation sites and modulate the electronic structure of Pt, which determine the elementary reaction kinetics of alkaline HER. The Ni(HCO3)2 nanoplates offer a platform for the uniform dispersion of Pt NPs, ensuring the maximum exposure of active sites. The results demonstrate that, Ni(HCO3)2 is an effective catalyst promoter for alkaline HER.  相似文献   

8.
Small-sized bimetallic nanoparticles that integrate the advantages of efficient exposure of the active metal surface and optimal geometric/electronic effects are of immense interest in the field of catalysis, yet there are few universal strategies for synthesizing such unique structures. Here, we report a novel method to synthesize sub-2 nm bimetallic nanoparticles (Pt–Co, Rh–Co, and Ir–Co) on mesoporous sulfur-doped carbon (S–C) supports. The approach is based on the strong chemical interaction between metals and sulfur atoms that are doped in the carbon matrix, which suppresses the metal aggregation at high temperature and thus ensures the formation of small-sized and well alloyed bimetallic nanoparticles. We also demonstrate the enhanced catalytic performance of the small-sized bimetallic Pt–Co nanoparticle catalysts for the selective hydrogenation of nitroarenes.

The strong interactions between metal and sulfur atoms doped in a carbon matrix allow for the synthesis of supported sub-2 nanometer M–Co (M = Pt, Rh, Ir) bimetallic nanocluster catalysts.  相似文献   

9.
Designing cost‐effective and efficient electrocatalysts plays a pivotal role in advancing the development of electrochemical water splitting for hydrogen generation. Herein, multifunctional active‐center‐transferable heterostructured electrocatalysts, platinum/lithium cobalt oxide (Pt/LiCoO2) composites with Pt nanoparticles (Pt NPs) anchored on LiCoO2 nanosheets, are designed towards highly efficient water splitting. In this electrocatalyst system, the active center can be alternatively switched between Pt species and LiCoO2 for hydrogen evolution reaction (HER) and oxygen evolution reaction (OER), respectively. Specifically, Pt species are the active centers and LiCoO2 acts as the co‐catalyst for HER, whereas the active center transfers to LiCoO2 and Pt turns into the co‐catalyst for OER. The unique architecture of Pt/LiCoO2 heterostructure provides abundant interfaces with favorable electronic structure and coordination environment towards optimal adsorption behavior of reaction intermediates. The 30 % Pt/LiCoO2 heterostructured electrocatalyst delivers low overpotentials of 61 and 285 mV to achieve 10 mA cm?2 for HER and OER in alkaline medium, respectively.  相似文献   

10.
Ultrafine metal nanoparticles (MNPs) with size <2 nm are of great interest due to their superior catalytic capabilities. Herein, we report the size-controlled synthesis of gold nanoparticles (Au NPs) by using a thiacalixarene-based coordination cage CIAC-108 as a confined host or stabilizer. The Au NPs encapsulated within the cavity of CIAC-108 (Au@CIAC-108) show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108 (Au/CIAC-108). The cage-embedded Au NPs can be used as a homogeneous catalyst in a mixture of methanol and dichloromethane while as a heterogeneous catalyst in methanol. The homogeneous catalyst Au@CIAC-108-homo exhibits significantly enhanced catalytic activities toward nitroarene reduction and organic dye decomposition, as compared with its larger counterpart Au/CIAC-108-homo and its heterogeneous counterpart Au@CIAC-108-hetero. More importantly, the as-prepared Au@CIAC-108-homo possesses remarkable stability and durability.

The size-controlled synthesis of Au NPs was achieved by using a coordination cage CIAC-108 as a support. The Au NPs encapsulated within the cavity of CIAC-108 show smaller size (∼1.3 nm) than the ones (∼4.7 nm) anchored on the surface of CIAC-108.  相似文献   

11.
The replacement of HgCl2/C with Au/C as a catalyst for acetylene hydrochlorination represents a significant reduction in the environmental impact of this industrial process. Under reaction conditions atomically dispersed cationic Au species are the catalytic active site, representing a large-scale application of heterogeneous single-site catalysts. While the metal nuclearity and oxidation state under operating conditions has been investigated in catalysts prepared from aqua regia and thiosulphate, limited studies have focused on the ligand environment surrounding the metal centre. We now report K-edge soft X-ray absorption spectroscopy of the Cl and S ligand species used to stabilise these isolated cationic Au centres in the harsh reaction conditions. We demonstrate the presence of three distinct Cl species in the materials; inorganic Cl, Au–Cl, and C–Cl and how these species evolve during reaction. Direct evidence of Au–S interactions is confirmed in catalysts prepared using thiosulfate precursors which show high stability towards reduction to inactive metal nanoparticles. This stability was clear during gas switching experiments, where exposure to C2H2 alone did not dramatically alter the Au electronic structure and consequently did not deactivate the thiosulfate catalyst.

In situ chlorine and sulphur XAS shows a dynamic ligand environment around cationic Au single-sites during acetylene hydrochlorination.  相似文献   

12.
Plasmonic nanoparticles (e.g., gold, silver) have attracted much attention for biological sensing and imaging as promising nanoprobes. Practical biomedical applications demand small gold nanoparticles (Au NPs) with a comparable size to quantum dots and fluorescent proteins. Very small nanoparticles with a size below the Rayleigh limit (usually <30–40 nm) are hard to see by light scattering using a dark-field microscope, especially within a cellular medium. A photothermal microscope is able to detect very small nanoparticles, down to a few nanometers, but the imaging speed is usually too slow (minutes to hours) to image living cell processes. Here an absorption modulated scattering microscopy (AMSM) method is presented, which allows for the imaging of sub-10 nm Au NPs within a cellular medium. The unique physical mechanism of AMSM offers the remarkable ability to remove the light scattering background of the cellular component. In addition to having a sensitivity comparable to that of photothermal microscopy, AMSM has a much higher imaging speed, close to the video rate (20 fps), which allows for the dynamic tracking of small nanoparticles in living cells. This AMSM method might be a valuable tool for living cell imaging, using sub-10 nm Au NPs as biological probes, and thereby unlocking many new applications, such as single molecule labeling and the dynamic tracking of molecular interactions.

An absorption modulated scattering microscopy technique that allows for the imaging of sub-10 nm gold nanoparticles within a cellular scattering medium is presented.  相似文献   

13.
Multi-component two-dimensional (2D) hybrid sub-1 nm heterostructures could potentially possess many novel properties. Controlling the site-selective distribution of nanoparticles (NPs) at the edge of 2D hybrid nanomaterial substrates is desirable but it remains a great challenge. Herein, we realized for the first time the preparation of ternary hybrid CuO-phosphomolybdic acid-Ag sub-1 nm nanosheet heterostructures (CuO-PMA-Ag THSNHs), where the Ag NPs selectively distributed at the edge of 2D hybrid CuO-PMA sub-1 nm nanosheets (SNSs). And the obtained CuO-PMA-Ag THSNHs as the catalyst exhibited excellent catalytic activity in alkene epoxidation. Furthermore, molecular dynamics (MD) simulations demonstrated that the SNSs interact with Ag NPs to form stable nanoheterostructures. This work would pave the way for the synthesis and broader applications of multi-component 2D hybrid sub-1 nm heterostructures.

Ag nanoparticles selectively distributed at the edge of CuO-PMA sub-1 nm nanosheets to form ternary hybrid CuO-PMA-Ag sub-1 nm nanosheet heterostructures, which as the catalyst exhibited excellent catalytic activity in alkene epoxidation.  相似文献   

14.
The catalytic aminocarbonylation of (hetero)aryl halides is widely applied in the synthesis of amides but relies heavily on the use of precious metal catalysis. Herein, we report an aminocarbonylation of (hetero)aryl halides using a simple cobalt catalyst under visible light irradiation. The reaction extends to the use of (hetero)aryl chlorides and is successful with a broad range of amine nucleophiles. Mechanistic investigations are consistent with a reaction proceeding via intermolecular charge transfer involving a donor–acceptor complex of the substrate and cobaltate catalyst.

An aminocarbonylation of (hetero)aryl halides using a simple cobalt catalyst under visible light irradiation is presented.  相似文献   

15.
The top-down fabrication of catalytically active molecular metal oxide anions, or polyoxometalates, is virtually unexplored, although these materials offer unique possibilities, for catalysis, energy conversion and storage. Here, we report a novel top-down route, which enables the scalable synthesis and deposition of sub-nanometer molybdenum-oxo clusters on electrically conductive mesoporous carbon. The new approach uses a unique redox-cycling process to convert crystalline MoIVO2 particles into sub-nanometer molecular molybdenum-oxo clusters with a nuclearity of ∼1–20. The resulting molybdenum-oxo cluster/carbon composite shows outstanding, stable electrocatalytic performance for the oxygen reduction reaction with catalyst characteristics comparable to those of commercial Pt/C. This new material design could give access to a new class of highly reactive polyoxometalate-like metal oxo clusters as high-performance, earth abundant (electro-)catalysts.

The top-down synthesis and deposition of polyoxometalate-like clusters on porous carbon is reported together with the high electrocatalytic oxygen reduction reactivity of the composite.  相似文献   

16.
A ruthenium-catalyzed ortho C–H arylation process is described using visible light. Using the readily available catalyst [RuCl2(p-cymene)]2, visible light irradiation was found to enable arylation of 2-aryl-pyridines at room temperature for a range of aryl bromides and iodides.

A ruthenium-catalyzed ortho C–H arylation process is described using visible light.  相似文献   

17.
The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels. Single atom catalysts (SACs) are encouraging to catalyze the electrochemical CO2RR due to the tunable electronic structure of the central metal atoms, which can regulate the adsorption energy of reactants and reaction intermediates. Moreover, SACs form a bridge between homogeneous and heterogeneous catalysts, providing an ideal platform to explore the reaction mechanism of electrochemical reactions. In this review, we first discuss the strategies for promoting the CO2RR performance, including suppression of the hydrogen evolution reaction (HER), generation of C1 products and formation of C2+ products. Then, we summarize the recent developments in regulating the structure of SACs toward the CO2RR based on the above aspects. Finally, several issues regarding the development of SACs for the CO2RR are raised and possible solutions are provided.

The electrochemical carbon dioxide reduction reaction (CO2RR) offers a promising solution to mitigate carbon emission and at the same time generate valuable carbonaceous chemicals/fuels.  相似文献   

18.
A sustainable, new synthesis of oxalamides, by acceptorless dehydrogenative coupling of ethylene glycol with amines, generating H2, homogeneously catalyzed by a ruthenium pincer complex, is presented. The reverse hydrogenation reaction is also accomplished using the same catalyst. A plausible reaction mechanism is proposed based on stoichiometric reactions, NMR studies, X-ray crystallography as well as observation of plausible intermediates.

Ruthenium catalyzed acceptorless dehydrogenative coupling of ethylene glycol and amines to oxalamides is reported. The reverse hydrogenation reaction is also accomplished.  相似文献   

19.
The ability to vary the temperature of an electrochemical cell provides opportunities to control reaction rates and pathways and to drive processes that are inaccessible at ambient temperature. Here, we explore the effect of temperature on electrochemical etching of Ni–Pt bimetallic nanoparticles. To observe the process at nanoscale resolution we use liquid cell transmission electron microscopy with a modified liquid cell that enables simultaneous heating and biasing. By controlling the cell temperature, we demonstrate that the reaction rate and dissolution potential of the electrochemical Ni etching process can be changed. The in situ measurements suggest that the destabilization of the native nickel oxide layer is the slow step prior to subsequent fast Ni removal in the electrochemical Ni dissolution process. These experiments highlight the importance of in situ structural characterization under electrochemical and thermal conditions as a strategy to provide deeper insights into nanomaterial transformations as a function of temperature and potential.

The combination of electrochemical analysis, temperature control and in situ TEM imaging directly probes the etching of Ni from bimetallic Ni–Pt nanoparticles.  相似文献   

20.
Multi-redox catalysis requires the accumulation of more than one charge carrier and is crucial for solar energy conversion into fuels and valuable chemicals. In photo(electro)chemical systems, however, the necessary accumulation of multiple, long-lived charges is challenged by recombination with their counterparts. Herein, we investigate charge accumulation in two model multi-redox molecular catalysts for proton and CO2 reduction attached onto mesoporous TiO2 electrodes. Transient absorption spectroscopy and spectroelectrochemical techniques have been employed to study the kinetics of photoinduced electron transfer from the TiO2 to the molecular catalysts in acetonitrile, with triethanolamine as the hole scavenger. At high light intensities, we detect charge accumulation in the millisecond timescale in the form of multi-reduced species. The redox potentials of the catalysts and the capacity of TiO2 to accumulate electrons play an essential role in the charge accumulation process at the molecular catalyst. Recombination of reduced species with valence band holes in TiO2 is observed to be faster than microseconds, while electron transfer from multi-reduced species to the conduction band or the electrolyte occurs in the millisecond timescale. Finally, under light irradiation, we show how charge accumulation on the catalyst is regulated as a function of the applied bias and the excitation light intensity.

Using transient spectroelectrochemical techniques, we investigate multiply reduced states of molecular catalysts on titania photoelectrodes as a function of the applied bias and the light intensity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号