首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 546 毫秒
1.
In view of the earlier observation that the incorporation of Pluronics in lipid membranes enhances their permeability to various drugs, the relationship between the structure of a permeant and the Pluronic-induced acceleration of its membrane transport was studied. The extent of acceleration defined as the ratio of the apparent permeation rate constants in the presence and in the absence of Pluronic, k/k 0, was determined for 21 weak acids and bases. Multiparameter correlations of the obtained data with various structural characteristics of the solutes transferable were constructed. Twelve structural parameters of the permeants were examined. The best correlation was achieved with a linear combination of the three parameters: the McGowan volume V of a compound, its proton-donating ability A, and the projection of the dipole moment of the molecule onto the normal to the membrane surface μZ, ln(k/k 0) = ?0.87-0.44μZ + 0.31 V + 0.28A, R = 0.90. This means that Pluronic preferably accelerates the permeation of large molecules containing proton-donating groups and molecules incorporated in the lipid bilayer in such a manner that the vector of their dipole moment is aligned with the dipole potential of the membrane.  相似文献   

2.
二元Pluronic嵌段共聚物相互作用   总被引:2,自引:0,他引:2  
用I2探针增溶分光光度法考察二元Pluronic两亲嵌段共聚物在水溶液中的胶束化行为,实验结果表明,对于分子PPO嵌段长度相近的P94/L92和F108/L92二元混合体系,这些分子在全部浓度比例范围内都发生相互作用,生成了混合胶束,由于这些分子的PEO嵌段长度不等,随着具有较短PEO嵌段的L92分子加入,P94/L92和F108/L92混合胶束外壳的EO基团数减少导致水化度降低。对于分子PPO嵌段长度不等的P94/L64二元混合体系,当溶液体当中L64的质量分数wL64<0.4时,由于P94/L64混合预胶束的形成,使P94分子在较高浓度时才生成单组分胶束,当wL64>0.4后,溶液中生成了P94/L64混合胶束,温度升高促进了胶束化行为。  相似文献   

3.
SANS from Pluronic P85 in d-water   总被引:2,自引:0,他引:2  
Small-angle neutron scattering (SANS) has been used to investigate Pluronic P85 (EO26PO40EO26) copolymer in deuterated water. A range of P85 fractions were measured for a wide sample temperature window. A rich phase behavior is reported. Unimers were observed below the critical micelle formation condition. At fixed P85 fraction, a number of micellar phases were observed upon increasing temperature; first spherical micelles, then cylindrical micelles, then lamellar micelles. At the highest temperature, a demixed lamellae phase was observed. Analysis of the SANS data consisted in fits to an empirical Guinier-Porod model that was appropriate for data fitting in the various phases at low P85 fractions. When the P85 fraction increased, an inter-particle structure factor was included to analyze SANS data from concentrated spherical micelles. At high P85 fractions, paracrystalline structures were observed as evidenced by an enhanced inter-particle interaction peak. A phase diagram for P85/d-water was obtained showing the various phases. Focusing on the spherical micelles phase for one sample composition, a core-shell model was used to fit SANS data and obtain sizes and scattering length densities. Using material balance equations, information such as the aggregation number (i.e., number of Pluronic macromolecules per micelle) and the number of hydration water molecules in the shell region are determined.  相似文献   

4.
We report the synthesis of nanosized particles based on bio-compatible polyethylene–polypropylene glycol (pluronic) materials. In aqueous solution, mini-emulsification of pluronic with two pyrimidine chromophores leads to nanoparticles with hydrodynamic radius below 100?nm. We have demonstrated that these probes exhibit a fast and fully reversible solvatochromic behaviour from yellow to purple when decreasing the pH solution. The average acidity constant of both dyes incorporated in pluronic mainly originate from the non-substituted pyrimidine (1,3-diazine) core. The close functionalization of the pyrimidine with pyridyl groups leads to a tridentate ligand suitable for metal cations complexation.
Figure
Aqueous nanoparticles of pluronic triblock copolymer incorporating pyrimidine chromophores are sensitive to pH changes: protonation of the dyes within the micelles core occurs in strong acidic aqueous media leading to purple coloration when compared to yellow colour in neutral or basic pH. This solvatochromic behaviour is fully reversible.  相似文献   

5.
Cinnamoyl Pluronic F127 (CP F127) was prepared by reacting cinnamoyl chloride and Pluronic F127. On the 1H NMR spectrum of CP F127, 1.2 moiety of cinnamoyl group was found to be attached to one molecule of CP F127. Using pyrene as a fluorescence probe, it was found that not only Pluronic F127 but also CP F127 could be readily assembled into micelles, and the critical micelle concentration was around 0.015 mg/ml and 0.03 mg/ml, respectively. Pluronic F127 in aqueous solution (2% w/v) could form no particles in 10–20°C, but particles (ca. 30 nm in diameter) were detected on a dynamic light scattering machine in 25–40°C possibly due to the thermal micellization. However, CP F127 was assembled into particles (ca. 230 nm) even in the lower temperature range, possibly because of the intermolecular hydrophobic interaction of the cinnamoyl group. The particle size of CP F127 strongly depended on the medium temperature and UV irradiation time. CP F127 was a good emulsifier for the preparation of O/W emulsions. The oil droplet size markedly increased upon UV irradiation (254 nm, 6 W), possibly because of the photo-dimerization of cinnamoyl group, but it was little affected by the temperature change (10–40°C).  相似文献   

6.
Pluronic analogs based on block copolymers of poly(propylene oxide) and poly(ethyl ethylene phosphate) (PEEP‐PPO‐PEEP) were synthesized, and the thermoresponsive behavior, including aggregation at low concentration and gelation at high concentration were studied. At lower concentrations up to 10 wt %, thermo‐induced aggregation of PEEP‐PPO‐PEEP was demonstrated by UV‐vis absorbance measurements using 1,6‐diphenyl‐1,3,5‐hexatriene as a probe. Microthermal analyzes showed symmetrically endothermic and exothermic thermograms during the thermo‐induced aggregation and de‐association processes, which was also associated with the dehydration and rehydration of PPO blocks, as revealed by the variable temperature NMR measurements. Thermo‐induced aggregation with the increased temperatures was also observed by dynamic light scattering. At higher concentration from 20 to 40 wt %, the aqueous solution of PEEP‐PPO‐PEEP underwent thermo‐induced phase transitions from a clear solution to a turbid solution, then to opaque gel and syneresis phases, depending on the molecular weights of PEEP blocks. Such a thermoresponsive hydrogel was used for doxorubicin incorporation. Sustained release of drug was achieved from the gel, demonstrating the polyphosphoester‐based Pluronic analogs' potential for biomedical applications. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6168–6179, 2009  相似文献   

7.
The micellar behavior of a polyethylene oxide block–polypropylene oxide block–polyethylene oxide copolymer Pluronic L64 in aqueous urea solutions (urea concentrations 0, 1, 2, 3, 4, and 6 M) by physical methods, viz. cloud point and viscosity, spectral techniques (Fourier transform infrared, fluorescence, and nuclear magnetic resonance), differential scanning calorimetry, and dynamic light scattering is reported. The presence of urea causes an increase in the clouding temperature, critical micellization temperature, and the structural transition (spherical micelles to ellipsoid/rod) temperature; different methods showed good agreement. Urea induces demicellization of L64, enhancing accumulation of water molecules surrounding micelles. L64 micelles show growth at high temperatures, but this micellar transition is suppressed by urea, as proven by calorimetric and viscometric methods. The results are discussed in terms of the molecular mechanism underlying the effects of urea.  相似文献   

8.
A new pathway for the radiolabeling of Pluronic PE6800 was developed. In a first step, the CH(2)-OH end groups of the copolymer were substituted by tosylates; in a second step these were reduced by [3H]-NaBH(4) to obtain tritiated chain ends. The final product was shown to be a mixture of native, tosylated, and reduced Pluronic containing 1 tritium atom per 1110 Pluronic molecules. The labeling procedure did not affect the molecular weight distribution nor the adsorption isotherm of the copolymer on polystyrene plates. A plateau value of about 0.7 microg/cm(2) is reached at a concentration in solution of 500 microg/ml, i.e., much lower than the cmc. Upon drying, the Pluronic adsorbed layer reorganizes in particles with a size of about 30 to 60 nm which cover about 15% of the substratum surface. This observation is of great importance for the design of protein-resistant surfaces by adsorption of Pluronic.  相似文献   

9.
10.
It has recently been found that Pluronics (block copolymers of ethylene oxide, EO, and propylene oxide, PO) favor the permeability and accumulation of anthracycline antibiotics, for example doxorubicin (Dox), in tumor cells. In an effort to understand these results, the interaction of EO(2)/PO(32)/EO(2) (Pluronic L61) with unilamellar egg yolk vesicles (80-100 nm in diameter) was examined. A partition coefficient K(p)=[Pl](membrane)/[Pl](water)=45 was determined. This corresponds to adsorption of about 20 polymer molecules to the surface of each vesicle in a 20 microM polymer solution. Despite this rather weak adsorption, Pluronic has a substantial effect upon the transmembrane permeation rate of Dox and upon the phospholipid flip-flop rate within the bilayers. Thus, the Dox permeation rate increases threefold and the flip-flop rate increases sixfold in 20 microM Pluronic. The two rates increase linearly with the amount of adsorbed polymer. The obvious ability of Pluronics to increase the mobility of membrane components may have important biomedical consequences.  相似文献   

11.
万东华  郑欧  周燕  吴莉瑜 《物理化学学报》2010,26(12):3243-3248
研究了PluronicF127胶团溶液对药物布洛芬(IBU)的增溶作用.通过芘探针荧光法测定了不同温度下F127在水溶液和0.01mo·lL-1pH7.4磷酸盐缓冲生理(PBS)溶液中的临界胶束浓度(cmc),采用高效液相色谱(HPLC)测定了F127溶液中布洛芬的溶解度,并依据公式计算了增溶参数(摩尔增溶量c和胶团-水分配系数K),考察了温度、溶剂和F68的加入对F127胶团化行为及其对布洛芬增溶作用的影响.结果表明:布洛芬的溶解度随F127质量分数的提高线性增加;随着温度升高,cmc急剧下降,胶团内核的疏水性增强,χ和K稍有增大;与水溶液相比,在PBS溶液中cmc减小,χ几乎不变,K显著降低;F68的加入对F127胶团的性质几乎无影响,对增溶的影响也不明显.对增溶参数的分析表明,K反映的是药物布洛芬的性质,χ则可反映嵌段共聚物F127的溶解效能,并证实了布洛芬是通过F127胶团的内核和栅栏层而实现增溶的.  相似文献   

12.
The temperature effect in aqueous solutions of a polyoxyethylene—polyoxypropylene—poloxyethylene (POE—POP—POE) block copolymer, Pluronic L-64 in water, was examined by means of viscosity, sedimentation, scattering and sound velocity measurements. Micelle formation in L-64 was strongly dependent on concentration and temperature. An increase in temperature shifted the micelle formation markedly to lower concentration; the micelle grew large particularly at temperatures near the cloud point. The viscosity data were analyzed to estimate various parameters, including the hydrated micellar volume, hydration number, hydrodynamic radius, etc. An increase in diazepam solubility in L-64 micelles with increasing concentration and temperature was observed.  相似文献   

13.
We present a novel approach of using the butylated hydroxytoluene (BHT) antioxidant found in commercial Pluronic F127 samples as a marker of polymer aggregation. The BHT marker was compared to the pyrene dye and static light scattering methods as a way to measure the critical micelle concentration (CMC) and critical micelle temperature (CMT). The n→π(?) transitions of BHT are sensitive to the microenvironment as demonstrated by plotting the fractional intensities of its excitation (≈280nm) and emission (≈325nm) peaks. BHT is more sensitive to changes in temperature than concentration. The partition coefficient increases ≈40-fold for pyrene compared to ≈2-fold for BHT when the temperature is increased from 25 to 37°C. CMT values determined using the BHT fluorescence decrease with increasing F127 concentration. Our results show that BHT can be used as a reliable marker of changes in the microenvironment of Pluronic F127.  相似文献   

14.
The formation of micelles of Pluronic block copolymers in poly(ethylene glycol) (PEG) was studied using fluorescence, solubilization measurements, and frozen fracture electron microscopy (FFEM) methods at 40 degrees C. It was discovered that surfactants L44 (EO(10)PO(23)EO(10)), P85 (EO(26)PO(40)EO(26)), and P105 (EO(37)PO(56)EO(37)) can form micelles in PEG 200 (PEG with a nominal molecular weight of 200), and the critical micellization concentration (CMC) decreases with increasing molecular weight of the surfactants. The size of the micelles formed by these Pluronic block copolymers is in the range of 6-35 nm. The CMC values in PEG 200 are higher than those in aqueous solutions.  相似文献   

15.
温度对Pluronic嵌段共聚物胶束结构的影响   总被引:6,自引:0,他引:6  
温度对Pluronic嵌段共聚物F108、F68、P94和L64胶束结构影响的研究结果表明,随着温度上升,胶束外壳PEO链的水化度急剧减小,胶束趋于形成聚集更为密实、尺寸较均匀的球形结构。在较高温度时,胶束内核基本上以PPO链为主构成。  相似文献   

16.
用稳态荧光法研究芘(Py)在Pluronic两亲嵌段共聚物胶团水溶液中的增溶,结果表明共聚物分子中的PPO实际含量越大,越有利于Py的增溶。加入无机盐KCl导致生成了表面较少水化的较大胶团,并且由于KCl解离产生的离子使溶剂极性增加,这些因素促进了Py的增溶。  相似文献   

17.
In order to be used as drug carriers, Pluronic micelles require stabilization to prevent degradation caused by significant dilution accompanying IV injection. This article studies three routes of Pluronic micelle stabilization. The first route was direct radical crosslinking of micelles cores which resulted in micelle stabilization. However, this compromised the drug loading capacity of Pluronic micelles. In the second route, a small concentration of vegetable oil was introduced into diluted Pluronic solutions. This decreased micelle degradation upon dilution while not compromising the drug loading capacity of oil-stabilized micelles. The third route was a novel technique based on polymerization of the temperature-responsive LCST hydrogel in the core of Pluronic micelles. The hydrogel phase was in a swollen state at room temperature, which provided a high drug loading capacity of the system. The hydrogel collapsed at physiological temperatures which locked the core of micelles thus preventing them from fast degradation upon dilution. This new drug delivery system was called Plurogel®. Phase transitions in Plurogel® caused by variations in temperature or concentration were studied by the EPR. The effect of Pluronic concentration in the incubation medium on the intracellular uptake of two anti-cancer drugs was studied. At low Pluronic concentrations, when the drugs were located in the hydrophilic environment, drug uptake was increased, presumably due to the effect of a polymeric surfactant on the permeability of cell membranes. In contrast, when the drugs were encapsulated in the hydrophobic cores of Pluronic micelles, drug uptake by the cells was substantially decreased. This may be advantageous in the prevention of undesired drug interactions with normal cells. Ultrasonication enhanced intracellular drug uptake from dense Pluronic micelles. These findings permitted the formulation of a new concept of a localized drug delivery.  相似文献   

18.
The interaction in aqueous solution between either the normal block copolymer poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide): Pluronic PE6200 [(EO)(11)-(PO)(28)-(EO)(11)], or the reverse block copolymer poly(propylene oxide)-poly(ethylene oxide)-poly(propylene oxide): Pluronic 25R4 [(PO)(19)-(EO)(33)-(PO)(19)] and the surfactants sodium decylsulfate, C(10)OS, decyltrimethyl ammonium bromide, C(10)TAB, and pentaethylene glycol monodecyl ether, C(10)E(5), was investigated and the aggregation behavior of these surfactants with Pluronics was compared. Surface tension measurements show that Pluronics in their non-aggregated state better interact with the anionic surfactant C(10)OS than with cationic and non-ionic ones. The presence of the two Pluronics induces the same lowering of the aggregation number of C(10)OS as shown by fluorescence quenching measurements. The number of polymer chains necessary to bind each C(10)OS aggregate has been estimated to be approximately 6 for PE6200 and approximately 2 for 25R4. Furthermore, this surfactant also induces the same increment in the gyration radius of the polymers as revealed by viscosimetry. Calorimetric results have been reasonably reproduced by applying a simple equilibrium model to the aggregation processes.  相似文献   

19.
Pluronic additives: a solution to sticky problems in digital microfluidics   总被引:1,自引:0,他引:1  
Digital microfluidics (DMF) is a promising technique for carrying out miniaturized, automated biochemical assays in which discrete droplets of reagents are actuated on the surface of an array of electrodes. A limitation for DMF is nonspecific protein adsorption to device surfaces, which interferes with assay fidelity and can cause droplets to become unmovable. Here, we report the results of a quantitative analysis of protein adsorption on DMF devices by means of confocal microscopy and secondary ion mass spectrometry. This study led us to a simple and effective method for limiting the extent of protein adsorption: the use of low concentrations of Pluronic F127 as a solution additive. This strategy has a transformative effect on digital microfluidics, facilitating the actuation of droplets containing greater than 1000-fold higher protein concentrations than is possible without the additive. To illustrate the benefits of this new method, we implemented a DMF-driven protein digest assay using large concentrations (1 mg/mL) of protein-substrate. The use of Pluronic additives solves a sticky problem in DMF, which greatly expands the range of applications that are compatible with this promising technology.  相似文献   

20.
Aggregation of poly(ethylene oxide)-b-poly(propylene oxide)-b-poly(ethylene oxide) triblock copolymer, Pluronic P123, is promoted in a room temperature ionic liquid, ethylammonium nitrate (EAN). A series of lyotropic mesophases including normal micellar cubic (I1), normal hexagonal (H1), lamellar (Lalpha), and reverse bicontinuous cubic (V2) are identified at 25 degrees C by using polarized optical microscopy and small-angle X-ray scattering techniques. Such self-assembly behavior of P123 in EAN is similar to those observed in H2O or 1-n-butyl-3-methylimidazolium hexafluorophosphate ([BMim(+)][PF6(-)]) systems except for the presence of the V2 phase in EAN and the absence of the I 1 phase in [BMim(+)][PF6(-)]. This suggests that the ionic solvent of EAN plays similar roles as H2O and [BMim(+)][PF6(-)] during the aggregation process and solvates the PEO blocks through hydrogen-bond interaction. Furthermore, the hydrogen bonds are considered to form between the ethylammonium cations and oxygen atoms of the PEO blocks as confirmed by Fourier transform infrared spectra of P123-EAN assemblies. This deduction is also consistent with the results from differential scanning calorimetry and thermogravimetric analysis. The additional V2 phase appearing in the P123-EAN system is attributed to the higher affinity for the relatively hydrophobic PPO blocks to EAN than to water, which might reduce the effective area of the solvophilic headgroup and increase the volume of the solvophobic part. The obtained results may help us to better understand the self-assembly process for amphiphilic block copolymers in protic solvents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号