首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Attaching electron-withdrawing substituent to organic conjugated molecules is considered as an effective method to produce n-type and ambipolar transport materials. In this work, we use density functional theory calculations to investigate the electron and hole transport properties of pentacene (PENT) derivatives after substituent and simulate the angular resolution anisotropic mobility for both electron and hole transport. Our results show that adding electron-withdrawing substituents can lower the energy level of lowest unoccupied molecular orbital (LUMO) and increase electron affinity, which are beneficial to the electron injection and ambient stability of the material. Also the LUMO electronic couplings for electron transport in these pentacene derivatives can achieve up to a hundred meV which promises good electron transport mobility, although adding electron-withdrawing groups will introduce the increase of electron transfer reorganization energy. The final results of our angular resolution anisotropic mobility simulations show that the electron mobility of these pentacene derivatives can get to several cm(2) V(-1) s(-1), but it is important to control the orientation of the organic material relative to the device channel to obtain the highest electron mobility. Our investigation provide detailed information to assist in the design of n-type and ambipolar organic electronic materials with high mobility performance.  相似文献   

2.
Conjugated pentacene dimers 1-3 were synthesized in two steps from readily available precursors. Noteworthy is the initial step, which assembles five independent fragments to form the carbon-rich molecular framework. Solution-cast films of these materials are air stable. Photocurrent measurements for solution-deposited thin films show that dimer 3 exhibits photoconductive gain >10.  相似文献   

3.
New dipolar compounds containing alternating electron-rich thieno[3,2-b]thiophene units and electron deficient units have been synthesized. Compounds with 5-pyrimidinyl (compound 2) or benzothiazole (compound 5) as the electron-deficient unit were structurally characterized by the single-crystal X-ray diffraction method. The arrangement of the molecules is found to be one-dimensional slipped-pi-stack for 2. That of 5 is of slipped-pi-stack, albeit with a tilt angle between neighboring pi-stacks. The pi-pi interfacial distances of the molecules in the crystal lattice are 3.47 and 3.59 A for 2 and 5, respectively. On the basis of the crystal structure, compound 2, with negligible pi-pi slip along the short axis of the molecules, has a calculated electronic coupling value (0.153 eV) twice as large as that of the largest coupling of pentacene. Accordingly, the theoretically estimated hole mobility (mu(+)) for 2 (2.32 cm(2) s(-1) V(-1)) compares favorably with that of pentacene (1.93-5.43 cm(2) s(-1) V(-1)), despite of the larger reorganization energy for hole transport in 2. The symmetric intrastack S...C contacts found between the thieno[3,2-b]thiophene and pyrimidinyl units explain the unique features of the crystal structure of 2 and the resulting large electronic coupling.  相似文献   

4.
Organic/inorganic core shell nanoparticles have been synthesized using high K TiO(2) as the core nanoparticle, and polystyrene as the shell. This material is easy to process and forms transparent continuous thin films, which exhibit a dielectric constant enhancement of over 3 times that of bulk polystyrene. This new dielectric material has been incorporated into capacitors and thin film transistors (TFTs). Mobilities approaching 0.2 cm(2)/V.s have been measured for pentacene TFTs incorporating the new TiO(2) polystyrene nanostructured gate dielectric, indicating good surface properties for pentacene film growth. This novel strategy for generating high K flexible gate dielectrics will be of value in improving organic and flexible electronic device performance.  相似文献   

5.
Amide functionalized anthradithiophenes (ADTs) play active acceptor roles in polymer bulk-heterojunction solar cells. The first separation of ADT isomers is reported, and the regiochemistry of the ADT has significant impact on crystal packing and solar cell performance. Cell efficiency up to 0.80%, due in large part to high open-circuit voltage (V(OC) > 1.0 V), is achieved in bulk-heterojunction solar cells comprising syn-ADT and poly(3-hexylthiophene).  相似文献   

6.
Borazine materials have been demonstrated to be a new class of multifunctional and thermally stable materials with high electron (10(-3) cm2 V(-1) s(-1)) and moderate hole (10(-4) cm2 V(-1) s(-1)) mobilities for applications in electroluminescent devices.  相似文献   

7.
We report pentacene‐based organic field‐effect transistor memory devices utilizing supramolecular electrets, consisting of a polyimide, PI(6FOH‐ODPA), containing hydroxyl groups for hydrogen bonding with amine functionalized aromatic rings (AM) of 1‐aniline (AM1), 2‐naphthylamine (AM2), 2‐aminoanthracene (AM3), and 1‐aminopyrene (AM4). The effect of the phenyl ring size and composition of AM1–AM4 on the hole‐trapping capability of the fabricated devices was investigated systematically. Under an operating voltage under ±40 V, the prepared devices using the electrets of 100 % AM1–AM4/PI ratios exhibited a memory window of 0, 8.59, 25.97, and 29.95 V, respectively, suggesting that the hole‐trapping capability increased with enhancing phenyl ring size. The memory window was enhanced as the amount of AM in PI increased. Furthermore, the devices showed a long charge‐retention time of 104 s with an ON/OFF current ratio of around 103–104 and multiple switching stability over 100 cycles. This study demonstrated that the electrical characteristics of the OFET memory devices could be manipulated through the chemical compositions of the supramolecular electrets.  相似文献   

8.
Star-shaped charge transporting materials with a triphenylamine core and a varying number of diphenylethenyl sidearms, obtained using a one step synthesis procedure from commercially available and relatively inexpensive starting materials and possessing comparatively high hole drift mobility (up to 0.017 cm(2) V(-1) s(-1)), are reported.  相似文献   

9.
High performance thin-film transistors were fabricated using a new precursor of pentacene through a multiple spin-heat procedure. High quality pentacene thin films can be prepared by this method and hence a FET device can be made in a top-contact configuration. The device exhibited a remarkable field-effect mobility of 0.38 cm(2) V(-1) s(-1) with an on/off ratio of 10(6).  相似文献   

10.
We report here on the rational synthesis, processing, and dielectric properties of novel layer-by-layer organic/inorganic hybrid multilayer dielectric films enabled by polarizable π-electron phosphonic acid building blocks and ultrathin ZrO(2) layers. These new zirconia-based self-assembled nanodielectric (Zr-SAND) films (5-12 nm thick) are readily fabricated via solution processes under ambient atmosphere. Attractive Zr-SAND properties include amenability to accurate control of film thickness, large-area uniformity, well-defined nanostructure, exceptionally large electrical capacitance (up to 750 nF/cm(2)), excellent insulating properties (leakage current densities as low as 10(-7) A/cm(2)), and excellent thermal stability. Thin-film transistors (TFTs) fabricated with pentacene and PDIF-CN(2) as representative organic semiconductors and zinc-tin-oxide (Zn-Sn-O) as a representative inorganic semiconductor function well at low voltages (<±4.0 V). Furthermore, the TFT performance parameters of representative organic semiconductors deposited on Zr-SAND films, functionalized on the surface with various alkylphosphonic acid self-assembled monolayers, are investigated and shown to correlate closely with the alkylphosphonic acid chain dimensions.  相似文献   

11.
5,12-Bis(methylthio)tetracene (2) and 5,11-bis(methylthio)tetracene (3) were synthesized. DFT calculations indicate that the HOMO and LUMO energy levels of 2 and 3 are lowered by 0.13-0.24 eV and their HOMO-LUMO energy gaps are reduced by 0.1 eV relative to those of tetracene. X-ray crystallographic data revealed that 2 is arranged as a result of a 1-D slipped-cofacial π-stacking with S-S and S-π interactions, similar to the packing arrangement of 6,13-bis(methylthio)pentacene (1), whereas 3 exhibits a herringbone packing arrangement without S-S interactions. The OFET devices fabricated using spin-coated films of soluble 1 and 2, with a bottom-contact device configuration, exhibited hole mobilities as high as 1.3 × 10(-2) and 4.0 × 10(-2) cm(2) V(-1) s(-1) with current on/off ratios of over 10(5) and 10(4), respectively.  相似文献   

12.
We report dramatic improvements in the stability and crystallinity arising from partial fluorination of soluble anthradithiophene derivatives. These fluorinated materials still behave as p-type semiconductors but with dramatic increases in thermal and photostability compared to the non-fluorinated derivatives. The triethylsilyl-substituted material forms highly crystalline films even from spin-cast solutions, leading to devices with maximum hole mobility greater than 1.0 cm(2)/V s. In contrast, the triisopropylsilyl derivative forms large, high-quality crystals that could serve as the substrate for transistor fabrication. For this compound, mobility as high as 0.1 cm(2)/V s was measured on the free-standing crystal.  相似文献   

13.
The structural, electronic, and carrier transport properties of bathocuproine (BCP), which is a typical hole/exciton-blocking material applied in organic light-emitting diodes (OLEDs), have been investigated based on density functional theory (DFT) and ab initio HF method. The detail characterizations of frontier electronic structure and lowest-energy optical transitions have been studied by means of time-dependent density functional theory (TD-DFT). Five BCP analogues, o-phenanthroline (1), 2,9-dimethyl-1,10-phenanthroline (2), 2,9-diphenyl-1,10-phenanthroline (3), 4,7-diphenyl-1,10-phenanthroline (4), and 2,9-bis(trifluoromethyl)-1,10-phenanthroline (5) have also been studied in order to select more suitable candidates of efficient hole-blocking materials. The calculated results showed that rigid planar structures, conjugate degrees, and substitute groups play crucial roles in the hole/exciton-blocking and electron-transport properties of these materials. The calculated geometries, ionization energies (IP), and energy gap between the singlet ground state and triplet excited state (E(T1)) were well in agreement with the experimental results. On the basis of the incoherent transport model, the calculated electron mobility of BCP is 1.79 x 10(-2) cm(2)/(V s), which is comparable to experimental results of 1.1 x 10(-3) cm(2)/(V s). The electron mobilities for compounds 1, 4, and 5 are 3.45 x 10(-2), 2.90 x 10(-2), and 1.40 x 10(-2) cm(2)/(V s), respectively. The calculated results indicated that compounds 1, 4, and 5 may be more effective hole/exciton-blocking materials than BCP.  相似文献   

14.
Lei T  Zhou Y  Cheng CY  Cao Y  Peng Y  Bian J  Pei J 《Organic letters》2011,13(10):2642-2645
An efficient synthetic approach to a series of aceno[2,1,3]thiadiazole derivatives is described. 2-TIPS and 2-TES molecules exhibited different crystal packings, and 2-TIPS show good device performances with hole mobility up to 0.4 cm(2) V(-1) s(-1) and an average mobility of 0.15 cm(2) V(-1) s(-1) as the active material for organic field-effect transistors. All of the results demonstrate these aceno[2,1,3]thiadiazole derivatives as promising materials for optoelectronic devices.  相似文献   

15.
Organic electronic devices that use graphene electrodes have received considerable attention because graphene is regarded as an ideal candidate electrode material. Transfer and lithographic processes during fabrication of patterned graphene electrodes typically leave polymer residues on the graphene surfaces. However, the impact of these residues on the organic semiconductor growth mechanism on graphene surface has not been reported yet. Here, we demonstrate that polymer residues remaining on graphene surfaces induce a stand-up orientation of pentacene, thereby controlling pentacene growth such that the molecular assembly is optimal for charge transport. Thus, pentacene field-effect transistors (FETs) using source/drain monolayer graphene electrodes with polymer residues show a high field-effect mobility of 1.2 cm(2)/V s. In contrast, epitaxial growth of pentacene having molecular assembly of lying-down structure is facilitated by π-π interaction between pentacene and the clean graphene electrode without polymer residues, which adversely affects lateral charge transport at the interface between electrode and channel. Our studies provide that the obtained high field-effect mobility in pentacene FETs using monolayer graphene electrodes arises from the extrinsic effects of polymer residues as well as the intrinsic characteristics of the highly conductive, ultrathin two-dimensional monolayer graphene electrodes.  相似文献   

16.
Monolayer islands of pentacene deposited on silicon substrates with thermally grown oxides were studied by electric force microscopy (EFM) and scanning Kelvin probe microscopy (SKPM) in ultrahigh vacuum (UHV) after prior 10 min exposure to atmospheric ambient. On 25-nm-thick oxides, the pentacene islands are 0.5 V higher in electrostatic potential than the silicon dioxide background because of intrinsic contact potential differences. On 2-nm-thin oxides, tunneling across the oxides allows Fermi level equilibration with pentacene associated states. The surface potential difference depends on the doping of the underlying Si substrates. The Fermi level movement at the pentacene SiO(2) interface was restricted and estimated to lie between 0.3 and 0.6 eV above the pentacene valence band maximum. It is proposed that hole traps in the pentacene or at the pentacene-oxide interface are responsible for the observations.  相似文献   

17.
A series of new tetrathiafulvalene (TTF) derivatives bearing dimethoxycarbonyl and phenyl or phthalimidyl groups fused to the TTF core (6 and 15-18) has been synthesized as potential soluble semiconductor materials for organic field-effect transistors (OFETs). The electron-withdrawing substituents lower the energy of the HOMO and LUMO levels and increase the solubility and stability of the semiconducting material. Crystal structures of all new TTF derivatives are also described, and theoretical DFT calculations were carried out to study the potential of the crystals to be used in OFET. In the experimental study, the best performing device exhibited a hole mobility up to 7.5 × 10(-3) cm(2) V(-1) s(-1)).  相似文献   

18.
We introduce a novel siloxane-terminated solubilizing group and demonstrate its effectiveness as a side chain in an isoindigo-based conjugated polymer. An average hole mobility of 2.00 cm(2) V(-1) s(-1) (with a maximum mobility of 2.48 cm(2) V(-1) s(-1)), was obtained from solution-processed thin-film transistors, one of the highest mobilities reported to date. In contrast, the reference polymer with a branched alkyl side chain gave an average hole mobility of 0.30 cm(2) V(-1) s(-1) and a maximum mobility of 0.57 cm(2) V(-1) s(-1). This is largely explained by the polymer packing: our new polymer exhibited a π-π stacking distance of 3.58 ?, while the reference polymer showed a distance of 3.76 ?.  相似文献   

19.
Bis(triisopropylsilylethnyl) pentacene (TIPS pentacene) was synthesized to increase its solubility in common liquid solvents and, at the same time, enhance the π–π stacking between neighboring acenes in the crystallized state in comparison with unmodified pentacene. Hot-stage microscopy experiments revealed that during heating voids develop along the long axis of the TIPS pentacene films {along the [210] direction/parallel to the (120 ) planes} and crystals overlap along the short axis {along the [120 ] direction/parallel to the (210) planes}. From molecular mechanics simulations, the predominant twin boundaries of (120 ) and commonly observed cracking planes of (120), (120 ), and (210) had relatively low surface energies in comparison with planes with similar Miller indices. Organic thin-film transistors with TIPS pentacene as the active layer were fabricated, and the mobility values decreased from 0.4–1.0 cm2/V s before cracking to ∼0.2 cm2/V s after cracking. To maintain the high charge carrier mobility of TIPS pentacene devices, these cracks should be avoided. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 3631–3641, 2006  相似文献   

20.
Horseradish peroxidase (HRP) has been immobilized on the surface of functionalized nanocrystalline diamond (NCD) thin films. The structure of the modified NCD surface as well as the electrochemical behavior of the whole system was characterized by impedance spectroscopy and cyclic voltammetry. The proximity of HRP heme groups to the NCD surface allowed direct electron transfer between them, resulting in two separated one-electron-transfer peaks at 0.05 V and 0.29 V vs Ag/AgCl, corresponding to the cathodic and anodic process, respectively. The heterogeneous electron-transfer constant for both processes was calculated to be 0.066 s(-1), the charge-transfer coefficient alpha = 0.49, and the immobilized enzymatic layer about 2.10(-10) mol/cm2. The modified NCD electrode was used as a third-generation biosensor for hydrogen peroxide determination showing a linear response in the 0.1-45 mM H2O2 range, at +0.05 V vs Ag/AgCl.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号