首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
The complexes of cobalt(II) with dothiepin (DOT) hydrochloride have been studied for kinetics of thermal degradation by thermogravimetric analysis (TG) and derivative thermogravimetric studies (DTG) in a static nitrogen atmosphere at a heating rate of 10° C min−1. A general mechanism of thermal decomposition is advanced involving dehydration and decomposition process for both organic and inorganic ligands. The thermal degradation reactions were found to proceed in three steps having an activation energy in the range 6.75–170 kJ mol−1. Thermal decomposition kinetics parameters were computed on the basis of thermal decomposition data. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
The thermal decomposition reactions of manganese(II) complexes with L-proline and 4-hydroxy- L-proline were studied. The Mn(II) proline complex loses the water molecule at 40–95°C and then, heated above 250°C it decomposes in several steps to manganese oxide. The most appropriate kinetic equations for dehydration process are the geometrical R2 or R3 ones. They give a value of activation energy, E of about 95 kJmol–1. The Mn(II) hydroxyproline complex loses the water molecules in two stages (70–110 and 110–230°C) and next it decomposes to manganese oxide in several steps. The R3 or D3 (three-dimensional diffusion) models are the most appropriate for the first stage of dehydration (E is about 155 kJ mol–1). The second step of dehydration is limited by D3 mechanism (E=52 kJ mol–1). This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

3.
Thermal decomposition of CoC2O4⋅2H2O was studied using DTA, TG, QMS and XRD techniques. It was shown that decomposition generally occurs in two steps: dehydration to anhydrous oxalate and next decomposition to Co and to CoO in two parallel reactions. Two parallel reactions were distinguished using mass spectra data of gaseous products of decomposition. Both reactions run according toAvrami–Erofeev equation. For reaction going to metallic cobalt parameter n=2 and activation energy is 97±14 kJ mol–1. It was found that decomposition to CoO proceeds in two stages. First stage (0.12<αII<0.41) proceeds according to n=2, with activation energy 251±15 kJ mol–1 and second stage (0.45<αII<0.85) proceeds according to parameter n=1 and activation energy 203±21 kJ mol–1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
Linkage isomers trans-bis(N-propyl-1,2-diaminoethane)dinitronickel(II) (brown, 1), trans-bis(N-isopropyl-1,2-diaminoethane)dinitritonickel(II) (blue-violet, 2a) and trans-bis(N-isopropyl-1,2-diaminoethane)dinitronickel(II) (brown, 2b) have been synthesized from solution and X-ray single crystal structure analysis of complex (1) has been performed. Simultaneous TG-DTA analyses reveal that complex (1) exhibits two successive phase transitions before to undergo decomposition (initial temperature of decomposition, Ti = 215 °C). The first one is reversible (82–98 °C; ΔH = 1.75 kJ mol−1 for heating and 93–77 °C; ΔH = −1.65 kJ mol−1 for cooling) and the second one is irreversible endothermic (135–150 °C kJ mol−1; ΔH = 1.80 kJ mol−1) phase transition. No visual color changes are observed in any of the two transitions. The causes related to the first phase transition remain unexplored. However, on the basis of IR spectral studies the second phase transition is supposed to be due to conformational changes of the diamine chelate rings. On the other hand, complexes (2a) and (2b) undergo decomposition without showing any phase transition [Ti = 185 and 195 °C for (2a) and (2b), respectively].  相似文献   

5.
The kinetics of the thermal decomposition of ammonium perchlorate at temperatures between 215 and 260°C is studied, in this work, by measuring the sample mass loss as a function of time applying the isothermal thermogravimetric method. From the maximum decomposition rate – temperature dependence two different decomposition stages, corresponding to two different structural phases of ammonium perchlorate, are identified. For the first region (215–235°C), corresponding to the orthorhombic phase, the mean value of the activation energy of 146.3 kJ mol–1, and the pre-exponential factor of 3.43⋅1014 min–1 are obtained, whereas for the second region (240–260°C), corresponding to the cubic phase, the mean value of the activation energy of153.3 kJ mol–1, and the pre-exponential factor of 4.11⋅1014 min–1 are obtained. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

6.
Thermal properties of the single crystals have been investigated by thermogravimetry (TG) and differential scanning calorimetry (DSC) techniques. The thermodynamic parameters such as activation energy and enthalpy and thermal stability temperature of the samples were calculated from the differential thermal analysis (DTA) and TG data. The activation energies for first peak of DTA curves were found as 496.65 (for Cd–Pd) and 419.37 kJ mol–1 (for Zn–Pd). For second peak, activation energies were calculated 116.56 (for Cd–Pd) and 173.96 kJ mol–1 (for Zn–Pd). The thermal stability temperature values of the Cd–Pd and Zn–Pd compounds at 10°C min–1 heating rate are determined as approximately 220.7 and 203°C, respectively. The TG results suggest that thermal stability of the Cd–Pd complex is higher than that of the Zn–Pd complex.  相似文献   

7.
The title polymer was obtained electrochemically by the reduction of 4,4'-bis(dibromomethyl)-2,2'-dimethoxybiphenyl under very smooth conditions. The DSC and TG/DTG curves registered at four different heating rates showed that the polymer is stable in air up to 150°C, where smooth degradation starts. Above 300°C, decomposition is fast and exothermic (ΔH= –323 J g–1) . The activation energy (116±4 kJ mol–1 ) was determined by Ozawa's method. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

8.
Thermal analysis of barium titanyl oxalate reveals that the decomposition proceeds through four distinct rate processes. Among them, the decomposition of oxalate occurs in the temperature range 230–350°C, and has been studied by TG and gas pressure measurements, supplemented by IR spectroscopy, electron microscopy and chemical analysis. Oxalate decomposition proceeds differently in vacuum and in flowing gas atmospheres. Analytical results indicate the formation of a complex carbonate together with CO, CO2 and water vapour below 400°C. Schemes for each type of decomposition are proposed and discussed. For decomposition in vacuum, kinetic observations fitted the three-dimensional, diffusion controlled, rate equation for almost the entire α-range (0.028≤α≤0.92). The activation energy is calculated to be3 189±6 kJ mol−1. In celebration of the 60th birthday of Dr. Andrew K. Galwey  相似文献   

9.
Forest fires are a plague for all countries in the world. Many factors can induce them. The organic matter (‘fuel’) in the plant, is often responsible for the start of the fire. The bio-polymers and mainly the cellulose decompose at about 300°C with flammable evolved gas. This decomposition is first order, and the activation energy is about 180 kJ mol−1 . On the other hand, the degradation of the lignin seems more complex, but we observed on many samples, a linearly decomposition of the lignin vs. the heating rate (in the interval close to the start of the forest fire, 300 to 3000°C h−1 ). The decomposition of the plant during the heat is mainly dependent on the cellulose level. This degradation is also slightly dependent on the lignin level mainly if the lignin present in this plant is less stable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

10.
Thermal analysis has been used to determine the impact of heating on the decomposition reaction of two Moroccan oil shales between ambient temperature and 500°C. During pyrolysis of raw oil shale, the residual organic matter (residual carbon) obtained for both shales depends on the heating rate (5 to 40°C min-1). Three stages characterize the overall process: the concentration of carbonaceous residue decreases with increase of heating rate, become stable around 12°C min-1 and continue to decrease at higher heating rates. Activation energies were determined using the Coats-Redfern method. Results show a change in the reaction mechanism at around 350°C. Below this temperature, the activation energy was 41.3 kJ mol-1 for the decomposition of Timahdit, and 40.5 kJ mol-1 for Tarfaya shale. Above this temperature the respective values are 64.3 and 61.3 kJ mol-1. The reactivity of Timahdit and Tarfaya oil shale residual carbon prepared at 12°C min-1 was subject to a dynamic air atmosphere to determine their thermal behaviour. Residual carbon obtained from Tarfaya oil shale is shown to be more reactive than that obtained from Timahdit oil shale. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

11.
The degradation kinetics of polycarbonate with flame retardant additive was investigated by means of thermogravimetric analysis. The samples were heated from 30 to 900°C in nitrogen atmosphere, with three different heating rates: 5, 10 and 20°C min–1. The Vyazovkin model-free kinetics method was applied to calculate the activation energy (E a) of the degradation process as a function of conversion and temperature. The results indicated that the polycarbonate without flame retardant additive starts to loose mass slightly over 380°C and the polycarbonate with flame retardant additive, slightly over 390°C (with heating rate of 5°C min–1). The activation energy for flame retardant polycarbonate and normal polycarbonate were 190 and 165 kJ mol–1, respectively.  相似文献   

12.
In this research, non-isothermal kinetics and feasibility study of medium grade crude oil is studied in the presence of a limestone matrix. Experiments were performed at a heating rate of 10°C min−1, whereas the air flow rate was kept constant at 50 mL min−1 in the temperature range of 20 to 600°C (DSC) and 20 to 900°C (TG). In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The activation energy values were in the order of 5–9 kJ mol−1 in LTO region and 189–229 kJ mol−1 in HTO region. It was concluded that the medium grade crude oil field was not feasible for a self-sustained combustion process.  相似文献   

13.
Pyrolysis of a wood chips mixture and main wood compounds such as hemicellulose, cellulose and lignin was investigated by thermogravimetry. The investigation was carried out in inert nitrogen atmosphere with temperatures ranging from 20°C to 900°C for four heating rates: 2 K min−1, 5 K min−1, 10 K min−1, and 15 K min−1. Hemicellulose, cellulose, and lignin were used as the main compounds of biomass. TGA and DTG temperature dependencies were evaluated. Decomposition processes proceed in three main stages: water evaporation, and active and passive pyrolysis. The decomposition of hemicellulose and cellulose takes place in the temperature range of 200–380°C and 250–380°C, while lignin decomposition seems to be ranging from 180°C up to 900°C. The isoconversional method was used to determine kinetic parameters such as activation energy and pre-exponential factor mainly in the stage of active pyrolysis and partially in the passive stage. It was found that, at the end of the decomposition process, the value of activation energy decreases. Reaction order does not have a significant influence on the process because of the high value of the pre-exponential factor. Obtained kinetic parameters were used to calculate simulated decompositions at different heating rates. Experimental data compared with the simulation ones were in good accordance at all heating rates. From the pyrolysis of hemicellulose, cellulose, and lignin it is clear that the decomposition process of wood is dependent on the composition and concentration of the main compounds.  相似文献   

14.
The dehydration of LiCl·H2O was studied under inert helium atmosphere by DTA/TG for different heating rates. The dehydration of LiCl·H2O proceeds through a two step reaction between 99–110 and 160–186°C, respectively. It leads to the formation of LiCl·0.5H2O as intermediate compound. The proposed mechanism is: and Based on the temperature peak of the DTA signals the activation energies of the two reactions were determined to be 240 kJ mol−1 (step 1) and 137 kJ mol−1 (step 2), respectively.  相似文献   

15.
1. Results of thermodynamic and kinetic investigations for the different crystalline calcium carbonate phases and their phase transition data are reported and summarized (vaterite: V; aragonite: A; calcite: C). A→C: T tr=455±10°C, Δtr H=403±8 J mol–1 at T tr, V→C: T tr=320–460°C, depending on the way of preparation,Δtr H=–3.2±0.1 kJ mol–1 at T trtr H=–3.4±0.9 kJ mol–1 at 40°C, S V Θ= 93.6±0.5 J (K mol)–1, A→C: E A=370±10 kJ mol–1; XRD only, V→C: E A=250±10 kJ mol–1; thermally activated, iso- and non-isothermal, XRD 2. Preliminary results on the preparation and investigation of inhibitor-free non-crystalline calcium carbonate (NCC) are presented. NCC→C: T tr=276±10°C,Δtr H=–15.0±3 kJ mol–1 at T tr, T tr – transition temperature, Δtr H – transition enthalpy, S Θ – standard entropy, E A – activation energy. 3. Biologically formed internal shell of Sepia officinalis seems to be composed of ca 96% aragonite and 4% non-crystalline calcium carbonate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

16.
Pyrolytic characteristics and kinetics of pistachio shell were studied using a thermogravimetric analyzer in 50?C800?°C temperature range under nitrogen atmosphere at 2, 10, and 15?°C?min?1 heating rates. Pyrolysis process was accomplished at four distinct stages which can mainly be attributed to removal of water, decomposition of hemicellulose, decomposition of cellulose, and decomposition of lignin, respectively. The activation energies, pre-exponential factors, and reaction orders of active pyrolysis stages were calculated by Arrhenius, Coats?CRedfern, and Horowitz?CMetzger model-fitting methods, while activation energies were additionaly determined by Flynn?CWall?COzawa model-free method. Average activation energies of the second and third stages calculated from model-fitting methods were in the range of 121?C187 and 320?C353?kJ?mol?1, respectively. The FWO method yielded a compatible result (153?kJ?mol?1) for the second stage but a lower result (187?kJ?mol?1) for the third stage. The existence of kinetic compensation effect was evident.  相似文献   

17.
The aim of the work was to determine the effect of heating rate on initial decomposition temperature and phases of thermal decomposition of cellulose insulation. The activation energy of thermo‐oxidation of insulation was also determined. Individual samples were heated in the air flow in the thermal range of 100°C to 500°C at rates from 1.9°C min?1 to 20.1°C min?1. The initial temperatures of thermal decomposition ranged from 220°C to 320°C, depending on the heating rate. Three regions of thermal decomposition were observed. The maximum rates of mass loss were measured at the temperatures between 288°C and 362°C. The activation energies, which achieved average values between 75 and 80.7 kJ mol?1, were calculated from the obtained results by non‐isothermal, model‐free methods. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

18.
Simultaneous thermogravimetry (TG) and differential thermal analysis (DTA) techniques were used for the characterization the thermal degradation of loratadine, ethyl-4-(8-chloro-5,6-dihydro-11H-benzo[5,6]cyclohepta[1,2-b]pyridin-11-ylidine)-1-piperidinecarboxylate. TG analysis revealed that the thermal decomposition occurs in one step in the 200–400°C range in nitrogen atmosphere. DTA and DSC curves showed that loratadine melts before the decomposition and the decomposition products are volatile in nitrogen. In air the decomposition follows very similar profile up to 300°C, but two exothermic events are observed in the 170–680°C temperature range. Flynn–Wall–Ozawa method was used for the solid-state kinetic analysis of loratadine thermal decomposition. The calculated activation energy (E a) was 91±1 kJ mol–1 for α between 0.02 and 0.2, where the mass loss is mainly due to the decomposition than to the evaporation of the decomposition products.  相似文献   

19.
Three thermal effects on heating/cooling of K2TaF7 in the temperature interval of 680–800°C were investigated by the DSC method. The values determined for the enthalpy change of the individual processes are: ΔtransIIHm(K2TaF7; 703°C) = 1.7(2) kJ mol−1, ΔtransIHm(K2TaF7; 746°C) = 19(1) kJ mol−1 and ΔtransIIIHm(K2TaF7; 771°C) = 13(1) kJ mol−1. The first thermal effect was attributed to a solid-solid phase transition; the second to the incongruent melting of K2TaF7 and the third to mixing of two liquids. These findings are supported by in situ neutron powder diffraction experiments performed in the temperature interval of 654–794°C.   相似文献   

20.
Piroxicam–excipient (chitosan or cellulose) mixtures after mechanical activation were investigated using DSC. Crystallization of amorphous piroxicam was detected near 80°C in the mixtures of the components activated separately. If the components in the mixture are activated together, amorphous piroxicam does not crystallize at heating. Both excipients interact with piroxicam, decreasing its melting point and enthalpy of melting. Mechanical activation intensifies the interaction, decreasing the melting point by 8°C and reducing the enthalpy of melting two times.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号