首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
1. Results of thermodynamic and kinetic investigations for the different crystalline calcium carbonate phases and their phase transition data are reported and summarized (vaterite: V; aragonite: A; calcite: C). A→C: T tr=455±10°C, Δtr H=403±8 J mol–1 at T tr, V→C: T tr=320–460°C, depending on the way of preparation,Δtr H=–3.2±0.1 kJ mol–1 at T trtr H=–3.4±0.9 kJ mol–1 at 40°C, S V Θ= 93.6±0.5 J (K mol)–1, A→C: E A=370±10 kJ mol–1; XRD only, V→C: E A=250±10 kJ mol–1; thermally activated, iso- and non-isothermal, XRD 2. Preliminary results on the preparation and investigation of inhibitor-free non-crystalline calcium carbonate (NCC) are presented. NCC→C: T tr=276±10°C,Δtr H=–15.0±3 kJ mol–1 at T tr, T tr – transition temperature, Δtr H – transition enthalpy, S Θ – standard entropy, E A – activation energy. 3. Biologically formed internal shell of Sepia officinalis seems to be composed of ca 96% aragonite and 4% non-crystalline calcium carbonate. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

2.
Cellulose, chitosan and piroxicam were investigated by TG and DSC at heating up to 215°C, and by X-ray powder diffraction before and after the heating. Dehydration of cellulose and chitosan comes to the end near 160°C. Thermal decomposition of chitosan starts at the final stage of its dehydration, and the mass losses after these two reactions overlap with one another. Enthalpy of dehydration is 47.1±2.4 kJ mol–1 of water for cellulose and 46.2±2.0 kJ mol–1 for chitosan. Thermal decomposition of chitosan is an exothermic process. Crystal structure of cellulose after heating remains unchanged, but that of chitosan contracts. Piroxicam melts at 200.7°C with the enthalpy of melting 35 kJ mol–1. Heat capacity of the liquid phase is greater than that of the solid phase by approximately 100 J mol–1K–1. Cooled back to ambient temperature, piroxicam remains glassy for a long time, crystallizing slowly back into the starting polymorph.  相似文献   

3.
Linkage isomers trans-bis(N-propyl-1,2-diaminoethane)dinitronickel(II) (brown, 1), trans-bis(N-isopropyl-1,2-diaminoethane)dinitritonickel(II) (blue-violet, 2a) and trans-bis(N-isopropyl-1,2-diaminoethane)dinitronickel(II) (brown, 2b) have been synthesized from solution and X-ray single crystal structure analysis of complex (1) has been performed. Simultaneous TG-DTA analyses reveal that complex (1) exhibits two successive phase transitions before to undergo decomposition (initial temperature of decomposition, Ti = 215 °C). The first one is reversible (82–98 °C; ΔH = 1.75 kJ mol−1 for heating and 93–77 °C; ΔH = −1.65 kJ mol−1 for cooling) and the second one is irreversible endothermic (135–150 °C kJ mol−1; ΔH = 1.80 kJ mol−1) phase transition. No visual color changes are observed in any of the two transitions. The causes related to the first phase transition remain unexplored. However, on the basis of IR spectral studies the second phase transition is supposed to be due to conformational changes of the diamine chelate rings. On the other hand, complexes (2a) and (2b) undergo decomposition without showing any phase transition [Ti = 185 and 195 °C for (2a) and (2b), respectively].  相似文献   

4.
The effect of the water vapor pressure on the thermal dehydration of manganese(II) formate dihydrate was studied by means of isothermal gravimetry under various water vapor pressure, ranging from 4.6 to 24.4 torr. The kinetics of dehydration was described by a two-dimensional phase-boundary model,R 2. The rate of dehydration decreased with increasing atmospheric water vapor pressure, but the Smith-Topley phenomenon was not observed for the present dehydration. The activation energy and the frequency factor for the dehydration were 110–170 kJ·mol−1 and 1010–1016 cm·s−1, respectively. These values increased with increasing water vapor pressure, and were much larger than those reported for the dehydration in vacuum.  相似文献   

5.
The degradation kinetics of the ABS terpolymer (acrylonitrile-butadiene-styrene) was investigated by means of thermogravimetric analysis. The samples were heated from 30 to 900°C in nitrogen atmosphere applying three different heating rates: 5, 10 and 20°C min−1. The Vyazovkin model-free kinetic method was used to calculate the activation energy (E) of the degradation process as a function of conversion and temperature. Between 20 and 80% of conversion, E was calculated and the figures were: for ABS GP, E is 204.5±11.5 kJ mol−1 (medium value); for ABS HI, E is 239.0±9.8 kJ mol−1; for ABS HH, E is 242.4±5.4 kJ mol−1.  相似文献   

6.
The basic kinetic parameters of thermal polymerization of hexafluoropropylene, namely, general rate constants, degree of polymerization, and their temperature and pressure dependences in the range of 230–290 °C and 2–12 kbar (200–1200 MPa) were determined. The activation energy (E act = 132±4 kJ mol−1) and activation volume (ΔV 0 = −27±1 cm3 mol−1) were calculated. The activation energy of thermal initiation of polymerization was estimated. The reaction scheme based on the assumption about a biradical mechanism of polymerization initiation was proposed.  相似文献   

7.
This work aims the evaluation of the kinetic triplets corresponding to the two successive steps of thermal decomposition of Ti(IV)–ethylenediaminetetraacetate complex. Applying the isoconversional Wall–Flynn–Ozawa method on the DSC curves, average activation energy: E=172.4±9.7 and 205.3±12.8 kJ mol–1, and pre-exponential factor: logA=16.38±0.84 and 18.96±1.21 min–1 at 95% confidence interval could be obtained, regarding the partial formation of anhydride and subsequent thermal decomposition of uncoordinated carboxylate groups, respectively. From E and logA values, Dollimore and Málek methods could be applied suggesting PT (Prout–Tompkins) and R3 (contracting volume) as the kinetic model to the partial formation of anhydride and thermal decomposition of the carboxylate groups, respectively.  相似文献   

8.
The regularities of chemical reactions in solid 8-hydroxyquinoline—chloramine B mixtures were studied under conditions of organic self-propagating high-temperature synthesis (SHS), isothermal reaction, and thermal explosion in the 20–220 °C temperature range. Comprehensive physicochemical analysis and microstructural study of the reaction products were carried out. The temperature of SHS initiation (58 °C), the heat of the reaction (129±9 kJ mol−1), the stoichiometric coefficient (1), the maximum temperature (T max=98–140 °C), and the velocity of SHS wave propagation (u=0.15–0.55 mm s−1) were determined. Depending on the ratio of the reactants (n), a low-temperature non-degeerate stable gasless mode (n≤1,T max=115 °C,E a=42 kcal mol−1) and a high-temperature mode (n>1,T max=140 °C,E a=0.4 kcal mol−1) are possible for SHS. The SHS affords monohydroxy and monochloro derivatives of 8-hydroxyquinoline, benzenesulfonamide, NaCl, NaOH, and H2O. The mechanism of the solid-phase reaction at temperatures below 58 °C includes surface, solid-phase, and gas-phase diffusion; that for SHS is capillary spreading of the hydroxyquinoline melt. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 12, pp. 2271–2284, December, 1999.  相似文献   

9.
The degradation kinetics of polycarbonate with flame retardant additive was investigated by means of thermogravimetric analysis. The samples were heated from 30 to 900°C in nitrogen atmosphere, with three different heating rates: 5, 10 and 20°C min–1. The Vyazovkin model-free kinetics method was applied to calculate the activation energy (E a) of the degradation process as a function of conversion and temperature. The results indicated that the polycarbonate without flame retardant additive starts to loose mass slightly over 380°C and the polycarbonate with flame retardant additive, slightly over 390°C (with heating rate of 5°C min–1). The activation energy for flame retardant polycarbonate and normal polycarbonate were 190 and 165 kJ mol–1, respectively.  相似文献   

10.
The kinetics and mechanism of the oxidation of D-galactose by chromium(VI) in the absence and presence of cerium(IV) and manganese(II) were studied spectrophotometrically in aqueous perchloric acid media. The reaction is first order in both [D-galactose] and [H+]. The cerium(IV) inhibits the oxidation path, whereas manganese(II) catalyzes the reactions. The observed inhibitory role of cerium(IV) suggests the formation of chromium(IV) as an intermediate. In the manganese(II) catalyzed path, the D-galactose-manganese(II) complex was considered to be an active oxidant. In this path, the complex forms a ternary chromate ester with chromium(IV) which subsequently undergoes acid catalyzed redox decomposition (one-step three-electron transfer: Indian J. Chem., 2004, vol. 42A, p. 1060; Colloids and Surfaces, 2001, vol. 193, p. 1) in the rate determining step. On the basis of kinetic data, the mechanism of D-galactose oxidation is proposed for parent, the manganese(II) catalyzed and cerium(IV) — inhibited reactions. The activation parameters E a = 59 kJ ΔH # = 57 kJ mol−1, and ΔS # = −119 J K−1 mol−1 are calculated and discussed. Reaction products are also examined. Published in Russian in Kinetika i Kataliz, 2009, Vol. 50, No. 1, pp. 90–95. This article was submitted by the authors in English.  相似文献   

11.
In this work, a kinetic study on the thermal degradation of carbon fibre reinforced epoxy is presented. The degradation is investigated by means of dynamic thermogravimetric analysis (TG) in air and inert atmosphere at heating rates from 0.5 to 20°C min−1 . Curves obtained by TG in air are quite different from those obtained in nitrogen. A three-step loss is observed during dynamic TG in air while mass loss proceeded as a two step process in nitrogen at fast heating rate. To elucidate this difference, a kinetic analysis is carried on. A kinetic model described by the Kissinger method or by the Ozawa method gives the kinetic parameters of the composite decomposition. Apparent activation energy calculated by Kissinger method in oxidative atmosphere for each step is between 40–50 kJ mol−1 upper than E a calculated in inert atmosphere. The thermo-oxidative degradation illustrated by Ozawa method shows a stable apparent activation energy (E a ≈130 kJ mol−1 ) even though the thermal degradation in nitrogen flow presents a maximum E a for 15% mass loss (E a ≈60 kJ mol−1 ). This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

12.
A flow-through bulk optode based on the use of 1-(2-pyridylazo)-2-naphthol (PAN) immobilized in a plasticized poly(vinyl chloride) membrane entrapped in a cellulose support, in conjuntion with the flow injection analysis technique, is proposed for the determination of manganese(II). The calibration graph obtained at 570 nm was linear in the range 0.27–27.5 mg L–1 (5 × 10–6– 5 × 10–4 M) Mn(II) with a detection limit of 0.18 mg L–1. The coefficients of variation of the sensor response for 5.5 mg L–1 of Mn(II) were ±0.22% for consecutive measurements (n = 10), ±0.48% between days (n = 5) and ±0.38% between different membranes (n = 6). The sensor was readily regenerated with the carrier acetic acid/acetate buffer of pH 4.5. The method was applied to the determination of manganese in steels, waters and lemon tree leaves. Received: 13 December 2000 / Revised: 25 January 2001 / Accepted: 26 January 2001  相似文献   

13.
The dehydration of LiCl·H2O was studied under inert helium atmosphere by DTA/TG for different heating rates. The dehydration of LiCl·H2O proceeds through a two step reaction between 99–110 and 160–186°C, respectively. It leads to the formation of LiCl·0.5H2O as intermediate compound. The proposed mechanism is: and Based on the temperature peak of the DTA signals the activation energies of the two reactions were determined to be 240 kJ mol−1 (step 1) and 137 kJ mol−1 (step 2), respectively.  相似文献   

14.
Thermal decomposition of CoC2O4⋅2H2O was studied using DTA, TG, QMS and XRD techniques. It was shown that decomposition generally occurs in two steps: dehydration to anhydrous oxalate and next decomposition to Co and to CoO in two parallel reactions. Two parallel reactions were distinguished using mass spectra data of gaseous products of decomposition. Both reactions run according toAvrami–Erofeev equation. For reaction going to metallic cobalt parameter n=2 and activation energy is 97±14 kJ mol–1. It was found that decomposition to CoO proceeds in two stages. First stage (0.12<αII<0.41) proceeds according to n=2, with activation energy 251±15 kJ mol–1 and second stage (0.45<αII<0.85) proceeds according to parameter n=1 and activation energy 203±21 kJ mol–1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

15.
Differential scanning calorimetry was employed to investigate the reaction of diglycidyl ethers of bisphenol A (DGEBA) of mean molecular mass 348–480 Da, with collagen hydrolysate of chrome-tanned leather waste in a solvent-free environment. The reaction leads to biodegradable polymers that might facilitate recycling of plastic parts in products of the automotive and/or aeronautics industry provided with protective films on this basis. The reaction proceeds in a temperature interval of 205–220°C, at temperatures approx. 30–40°C below temperature of thermal degradation of collagen hydrolysate. The found value of reaction enthalpy, 519.19 J g−1 (= 101.24 kJ mol−1 of epoxide groups) corresponds with currently found enthalpy values of the reaction of oxirane ring with amino groups. Reaction heat depends on the composition of reaction mixture (or on mass fraction of diglycidyl ethers in the reaction mixture); proving the dependence of kinetic parameters of the reaction (Arrhenius pre-exponential factor A (min−1) and activation energy E a (kJ mol−1)) did not succeed. Obtained values of kinetic parameters are on a level corresponding to the assumption that reaction kinetics is determined by diffusion.  相似文献   

16.
The kinetics of the reactions between Fe(phen) 3 2+ [phen = tris–(1,10) phenanthroline] and Co(CN)5X3− (X = Cl, Br or I) have been investigated in aqueous acidic solutions at I = 0.1 mol dm−3 (NaCl/HCl). The reactions were carried out at a fixed acid concentration ([H+] = 0.01 mol dm−3) and the second-order rate constants for the reactions at 25 °C were within the range of (0.151–1.117) dm3 mol−1 s−1. Ion-pair constants K ip for these reactions, taking into consideration the protonation of the cobalt complexes, were 5.19 × 104, 3.00 × 102 and 4.02 × 104 mol−1 dm−3 for X = Cl, Br and I, respectively. Activation parameters measured for these systems were as follows: ΔH* (kJ K−1 mol−1) = 94.3 ± 0.6, 97.3 ± 1.0 and 109.1 ± 0.4; ΔS* (J K−1) = 69.1 ± 1.9, 74.9 ± 3.2 and 112.3 ± 1.3; ΔG* (kJ) = 73.7 ± 0.6, 75.0 ± 1.0 and 75.7 ± 0.4; E a (kJ) = 96.9 ± 0.3, 99.8 ± 0.4, and 122.9 ± 0.3; A (dm3 mol−1 s−1) = (7.079 ± 0.035) × 1016, (1.413 ± 0.011) × 1017, and (9.772 ± 0.027) × 1020 for X = Cl, Br, and I respectively. An outer – sphere mechanism is proposed for all the reactions.  相似文献   

17.
Thermodynamic stability of CdMoO4 was determined by measuring the vapor pressures of Cd and MoO3 bearing gaseous species. Th vaporization reaction could be described as CdMoO4(s)+MoO2(s) =Cd(g)+2/n(MoO3)n (n=3, 4 and 5). The vapor pressures of the cadmium (p Cd) and trimer (p (MoO3)3) measured in the temperature range 987≤T/K≤1111 could be expressed, respectively, as ln (p Cd/Pa) = –32643.9/T+29.46±0.08 and ln(p (MoO3)3/Pa) = –32289.6/T+29.28±0.08. The standard molar Gibbs free energy of formation of CdMoO4(s), derived from the vaporization results could be expressed by the equations: °f G CdMoO4 (s) 0= –1002.0+0.267T±14.5 kJ mol–1 (987≤T/K≤1033) and °f G CdMoO4 (s) 0 = –1101.9+0.363T±14.4 kJ mol–1 (1044≤T/K≤1111). The standard enthalpy of formation of CdMoO4(s) was found to be –1015.4±14.5 kJ mol–1 .  相似文献   

18.
Summary. The cohesion potential energy of the crystal of one enantiomer of ethyl 3-cyano-3-(3,4-dimethyloxyphenyl)-2,2,4-trimethylpentanoate, −47.7 ± 0.1 kJ mol−1 (0–90°C), was found out from the heat of sublimation (123.2 ± 5.1 kJ mol−1, 78.6°C) and the kinetic energies for the gas phase and the crystal. It was found that the entropy function of Debye’s theory of solids mathematically agreed with the vibrational entropy of the gas (variationally obtained), allowing to disclose the vibrational energy using the Debye energy function (E vib 835.0 kJ mol−1 (78.6°C), E 0 included). E kin for the crystal (771.1 kJ mol−1 (78.6°C)) was obtained by Debye’s theory with the experimental heat capacity. The cohesion energy represented a moderate part of the sublimation energy. The cohesion energy of the racemic crystal, −44.2 kJ mol−1, was obtained by the heat of formation of the crystal in the solid state (3.0 kJ mol−1, 83.3°C) and E kin for the crystal (by Debye’s theory). The decrease in cohesion on formation of the crystal accounted for the energy of formation. The change in potential energy on liquefaction of the racemate from the gas state was disclosed obtaining added-up E vib + rot for the liquid in the way as to E vib for the gas, the Debye entropy function being increasedly suited for the liquid (E vib + rot 763.4 kJ mol−1 (115.4°C)). Positive ΔE pot, 13.0 kJ mol−1, arised from the increase in electronic energy (Δ l νmean − 154.3 cm−1, by the dielectric nature of the liquid), added to the cohesion energy.  相似文献   

19.
The cohesion potential energy of the crystal of one enantiomer of ethyl 3-cyano-3-(3,4-dimethyloxyphenyl)-2,2,4-trimethylpentanoate, −47.7 ± 0.1 kJ mol−1 (0–90°C), was found out from the heat of sublimation (123.2 ± 5.1 kJ mol−1, 78.6°C) and the kinetic energies for the gas phase and the crystal. It was found that the entropy function of Debye’s theory of solids mathematically agreed with the vibrational entropy of the gas (variationally obtained), allowing to disclose the vibrational energy using the Debye energy function (E vib 835.0 kJ mol−1 (78.6°C), E 0 included). E kin for the crystal (771.1 kJ mol−1 (78.6°C)) was obtained by Debye’s theory with the experimental heat capacity. The cohesion energy represented a moderate part of the sublimation energy. The cohesion energy of the racemic crystal, −44.2 kJ mol−1, was obtained by the heat of formation of the crystal in the solid state (3.0 kJ mol−1, 83.3°C) and E kin for the crystal (by Debye’s theory). The decrease in cohesion on formation of the crystal accounted for the energy of formation. The change in potential energy on liquefaction of the racemate from the gas state was disclosed obtaining added-up E vib + rot for the liquid in the way as to E vib for the gas, the Debye entropy function being increasedly suited for the liquid (E vib + rot 763.4 kJ mol−1 (115.4°C)). Positive ΔE pot, 13.0 kJ mol−1, arised from the increase in electronic energy (Δ l νmean − 154.3 cm−1, by the dielectric nature of the liquid), added to the cohesion energy.  相似文献   

20.
The constant-volume combustion energies of the lead salts of 2-hydroxy-3,5-dinitropyridine (2HDNPPb) and 4-hydroxy-3,5-dinitropyridine (4HDNPPb), ΔU c (2HDNPPb(s) and 4HDNPP(s)), were determined as –4441.92±2.43 and –4515.74±1.92 kJ mol–1 , respectively, at 298.15 K. Their standard enthalpies of combustion, Δc m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K), and standard enthalpies of formation, Δr m H θ(2HDNPPb(s) and 4HDNPPb(s), 298.15 K) were as –4425.81±2.43, –4499.63±1.92 kJ mol–1 and –870.43±2.76, –796.65±2.32 kJ mol–1 , respectively. As two combustion catalysts, 2HDNPPb and 4HDNPPb can enhance the burning rate and reduce the pressure exponent of RDX–CMDB propellant.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号