首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This report explores some properties of 80–200 nm nanoparticles containing 5‐aminolevulinic acid (ALA) and fullerene (C60) for photodynamic therapy (PDT). Compared with ALA, the nanoparticles yielded more protoporphyrin IX (PpIX) formation in cells and tissues and to a significant improvement in antitumor efficacy in tumor‐bearing mice. Maximum levels of PpIX were obtained 4 h after administration and selective PpIX formation in tumor was observed. These nanoparticles appear to be a useful vehicle for drug delivery purposes. In this study, a procedure for preparing fullerene nanoparticles containing ALA was developed. The product alone exhibited no detectable toxicity in the dark and was superior to ALA alone in promoting PpIX biosynthesis and PDT efficacy both in culture and in a murine tumor model. These results suggest that this procedure could be the basis for an improved PDT protocol for cancer control.  相似文献   

2.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

3.
Lymphocytes treated with δ-aminolevulinic acid (ALA) can accumulate the photoactive, fluorescent heme precursor, protoporphyrin IX (PpIX). With visible light illumination, PpIX can be used in photodynamic therapy (ALA-PDT) to kill or functionally alter cells. The aim of this study was to characterize the effects of ALA and ALA-PDT on resting and activated human peripheral blood T lymphocytes. Accumulation of PpIX depends inversely on the rate of its iron-dependent conversion into heme. Activated, replicating lymphocytes have low intracellular iron levels, with corresponding increases in the transferrin receptor (CD71). Thus, we expected activated lymphocytes would preferentially accumulate PpIX. Using four-color flow cytometry, we examined ALA-induced PpIX levels in T-cell subsets of resting and activated human peripheral blood mononuclear cells and the relationship between CD71 and PpIX. Peripheral blood mononuclear cells stimulated by phytohemagglutinin (PHA) were simultaneously phenotyped for PpIX, CD71 and the T-cell markers CD3 and CD4 or CDS. In activated cells treated with 0-6mM ALA for 4 h, PpIX fluorescence was maximal at 1 mM ALA. On a single cell basis, there was a strong correlation between PpIX ac-cumulation and CD71 expression. The ALA-treated, PHA-stimulated, CD71+ lymphocytes had an eight-fold greater mean PpIX fluorescence than nonactivated, CD71- cells. Approximately 87% of the CD4* and 85% of the CD8+ T cells accumulated PpIX. The PpIX levels of CDS+ cells were about 5% greater than CD4+ cells. In addition, mixed lymphocyte reaction-stimulated cells treated with ALA accumulated more PpIX than controls. Thus, activated cells preferentially accumulate endogenous PpIX when exogenous ALA is administered. Cytotoxicity studies showed that the majority of the activated cells following ALA-PDT were killed but resting cells were spared. Also, in examining activation markers by flow cytometry the number of cells that were positive for activation markers CD38 or CD71 dramatically decreased after ALA and light treatment in activated populations. The data suggest a role for ALA-PDT as an immunomodulator or photocytotoxic agent targeting activated lymphocytes.  相似文献   

4.
Comparison of the fluorescence intensity caused by the accumulation of PpIX in endometrial cancer xenografts in nude mice after low‐dose 5‐Aminolevulinic acid (ALA) injection combined with siRNA transfection was mediated by ultrasound microbubbles and polyethyleneimine (PEI) to explore the feasibility of the ultrasound microbubble technique as transfection agents. Knockdown of ferrochelatase (FECH) in human endometrial cancer xenografts in nude mice was performed by transfection with FECH‐siRNA mediated by PEI and ultrasound microbubbles alone or in combination; then, low‐dose ALA was injected. Subsequently, an in vivo animal imaging system was employed to detect the fluorescence intensity in xenografts. Red fluorescence was observed in xenografts given more than 6.25 mg kg?1 of ALA. When the dose of ALA was greater than 50 mg kg?1, there was a significant difference in the fluorescence between tumor and other tissues. After the nude mice were transfected with siRNA and treated with low‐dose ALA (1.0 mg kg?1), apparent PpIX fluorescence of the xenografts was observed, and the fluorescence intensity was PEI+ ultrasound microbubbles > PEI > ultrasound microbubbles. Ultrasound microbubbles in combination with PEI could generate a higher fluorescence intensity of PpIX than that obtained with ultrasound microbubbles or PEI alone, and ultrasound microbubbles could wholly or partially replace PEI under certain conditions.  相似文献   

5.
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron‐dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA‐PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA‐PpIX fluorescence in tumor cells with lower FECH activity (MDA‐MB‐231, Hs 578T) than in tumor cells with higher FECH activity (MDA‐MB‐453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.  相似文献   

6.
Protoporphyrin IX (PpIX) is used as a fluorescence marker and photosensitizing agent in photodynamic therapy (PDT). A temporary increase of PpIX in tissues can be obtained by administration of 5-aminolevulinic acid (ALA). Lipophilicity is one of the key parameters defining the bioavailability of a topically applied drug. In the present work, octanol-water partition coefficients of ALA and several of its esters have been determined to obtain a parameter related to their lipophilicity. The influence of parameters such as lipophilicity, concentration, time, and pH value on PpIX formation induced by ALA and its esters is then investigated in human cell lines originating from the lung and bladder. ALA esters are found to be more lipophilic than the free acid. The optimal concentration (c(opt), precursor concentration at which maximal PpIX accumulation is observed) is then measured for each precursor. Long-chained ALA esters are found to decrease the c(opt) value by up to two orders of magnitude as compared to ALA. The reduction of PpIX formation observed at higher concentrations than c(opt) is correlated to reduced cell viability as determined by measuring the mitochondrial activity. Under optimal conditions, the PpIX formation rate induced by the longer-chained esters is higher than that of ALA or the shorter-chained esters. A biphasic pH dependence on PpIX generation is observed for ALA and its derivatives. Maximal PpIX formation is measured under physiological conditions (pH 7.0-7.6), indicating that further enhancement of intracellular PpIX content may be achieved by adjusting the pharmaceutical formulation of ALA or its derivatives to these pH levels.  相似文献   

7.
In our approach to synthesize bioactive molecules, a series of novel N‐heterocycles were synthesized and evaluated for their in vitro antitumor activity against a panel of three human cancer cell lines, namely, human breast cancer cell line (MCF‐7), human cervical cancer cell line (HeLa), and human prostate cancer PC‐3. The majority of the tested compounds exhibited significant cytotoxic activity toward the tested tumor cell lines. Analogues 33 , 34 , 31 , 38 , 21 , 23 , 22 , and 20 exhibited considerable cytotoxic activities comparable with standard drug 5‐fuorouracil. Compound 33 displayed superior cytotoxicity with IC50 value of 4.12 ± 1.21 μg/mL against HeLa tumor cell line.  相似文献   

8.
Photochemical internalization (PCI) has shown great promise as a therapeutic alternative for targeted drug delivery by light‐harnessed activation. However, it has only been applicable to therapeutic macromolecules or medium‐sized molecules. Herein we describe the use of an amphiphilic, water‐soluble porphyrin–β‐cyclodextrin conjugate (mTHPP‐βCD) as a “Trojan horse” to facilitate the endocytosis of CD‐guest tamoxifens into breast‐cancer cells. Upon irradiation, the porphyrin core of mTHPP‐βCD expedited endosomal membrane rupture and tamoxifen release into the cytosol, as documented by confocal microscopy. The sustained complexation of mTHPP‐βCD with tamoxifen was corroborated by 2D NMR spectroscopy and FRET studies. Following the application of PCI protocols with 4‐hydroxytamoxifen (4‐OHT), estrogen‐receptor β‐positive (Erβ+, but not ERβ?) cell groups exhibited extensive cytotoxicity and/or growth suspension even at 72 h after irradiation.  相似文献   

9.
Photodynamic therapy (PDT), in which 5‐ALA (a precursor for protoporphyrin IX, PpIX) is administered prior to exposure to light, is a nonscarring treatment for skin cancers. However, for deep tumors, ALA‐PDT is not always effective due to inadequate production of PpIX. We previously developed and reported a combination approach in which the active form of vitamin D3 (calcitriol) is given systemically prior to PDT to improve PpIX accumulation and to enhance PDT‐induced tumor cell death; calcitriol, however, poses a risk of hypercalcemia. Here, we tested a possible strategy to circumvent the problem of hypercalcemia by substituting natural dietary vitamin D3 (cholecalciferol; D3) for calcitriol. Oral D3 supplementation (10 days of a 10‐fold elevated D3 diet) enhanced PpIX levels 3‐ to 4‐fold, and PDT‐mediated cell death 20‐fold, in subcutaneous A431 tumors. PpIX levels and cell viability in normal tissues were not affected. Hydroxylated metabolic forms of D3 were only modestly elevated in serum, indicating minimal hypercalcemic risk. These results show that brief oral administration of cholecalciferol can serve as a safe neoadjuvant to ALA‐PDT. We suggest a clinical study, using oral vitamin D3 prior to PDT, should be considered to evaluate this promising new approach to treating human skin cancer.  相似文献   

10.
As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.  相似文献   

11.
5‐Fluorouracil (5‐FU) is widely used against many types of solid cancer in clinics. However, because of its limitations such as short half‐life, poor oral absorption and rapid clearance by dihydropyrimidine dehydrogenase have limited its applications. In current study, new in situ chemically grafted thermogels for prolonged drug release are formed on the basis of poloxamer 407 (PF127) and carboxymethyl chitosan (CMCS) using glutaraldehyde as cross‐linking agent. The phase transition from sol to gel state at body temperature was confirmed by tube titling, rheological analysis, and optical transmittance determinations. Swelling and drug release experiments conducted at various pH and temperature demonstrated that developed formulations are thermoresponsive with maximum swelling and release below critical gelation temperature (CGT) (pH 7.4, 25°C). Cells growth inhibition study confirmed the biocompatibility of thermogels against L929 cell lines. Methyl thiazolyl tetrazolium (MTT) assay confirmed that 5‐FU–loaded thermogels have the potential to cause cells death against HeLa and MCF‐7 cancer lines. The IC50 values calculated for pure 5‐FU solution (27 ± 0.81 μg/mL for HeLa and 24 ± 0.58 μg/mL for MCF‐7) were found higher in comparison with 5‐FU–loaded thermogels, against HeLa (17 ± 0.39 μg/mL) and MCF‐7 (14 ± 0.67 μg/mL). Fourier transform infrared (FTIR) confirmed the new structure formation and chemical grafting between PF127 and CMCS. Thermogravimetric (TG) and differential scanning calorimetry (DSC) analyses proved the phase transition around physiologic temperature range, while scanning electron microscopy (SEM) analysis displayed the presence of connected pores in the cross section of thermogels facilitating the uptake of solvents and drug particles. Altogether, results concluded that developed chemically grafted thermogels can be used in vivo for prolonged drug release after subcutaneous administration.  相似文献   

12.
5‐aminolevulinic acid (5‐ALA )‐based photodynamic therapy (PDT ) has been successfully used in the treatment of cancers. However, the mechanism of 5‐ALA transportation into cancer cells is still not fully elucidated. Previous studies have confirmed that the efficiency of 5‐ALA‐PDT could be affected by the membrane skeleton protein 4.1R. In this study, we investigated the role of 4.1R in the transport of 5‐ALA into cells. Wild‐type (4.1R+/+) and 4.1R gene knockout (4.1R−/−) mouse embryonic fibroblast (MEF ) cells were incubated with 1 mm 5‐ALA and different concentrations of specific inhibitors of GABA transporters GAT (1‐3). Our results showed that the inhibition of GAT 1 and GAT 2 in particular markedly attenuated the intracellular PpIX production, reactive oxygen species (ROS ) level and 5‐ALA ‐induced photodamage. However, the inhibition of GAT 3 did not show such effects. Further research showed that 4.1R−/− MEF cells had a lower expression of GAT 1 and GAT 2 than 4.1R+/+ MEF cells. Additionally, 4.1R directly bound to GAT 1 and GAT 2. Taken together, GAT 1 and GAT 2 transporters are involved in the uptake of 5‐ALA in MEF cells. 4.1R plays an important role in transporting 5‐ALA into cells via at least partly interaction with GAT 1 and GAT 2 transporters in 5‐ALA ‐PDT .  相似文献   

13.
Methylated β‐cyclodextrin (Me‐β‐CD) was used to complex a free‐radical photoinitiator, 2‐hydroxy‐2‐methyl‐1‐phenylpropan‐1‐one ( 1 ), yielding the water‐soluble 1 : 1 host/guest complex 1 a . The structure of complex 1 a was verified by means of IR, UV/vis and 1H NMR spectroscopy. The influence of Me‐β‐CD as the host on the photopolymerization kinetics of N‐isopropylacrylamide was studied. Compared to the photopolymerization carried out under nearly identical conditions but without cyclodextrin, an increase in the polymerization rate was registered in the presence of complex 1 a .  相似文献   

14.
Photodynamic therapy (PDT) is a combination of light with a lesion-localizing photosensitizer or its precursor to destroy the lesion tissue. PDT has recently become an established modality for several malignant and non-malignant conditions, but it can be further improved through a better understanding of the determinants affecting its therapeutic efficiency. In the present investigation, protoporphyrin IX (PpIX), an efficient photosensitizer either endogenously induced by 5-aminolevulinic acid (ALA) or exogenously administered, was used to correlate its subcellular localization pattern with photodynamic efficiency of human oesophageal carcinoma (KYSE-450, KYSE-70) and normal (Het-1A) cell lines. By means of fluorescence microscopy ALA-induced PpIX was initially localized in the mitochondria, whereas exogenous PpIX was mainly distributed in cell membranes. At a similar amount of cellular PpIX PDT with ALA was significantly more efficient than photodynamic treatment with exogenous PpIX at killing all the 3 cell lines. Measurements of mitochondrial membrane potential and intracellular ATP content, and electron microscopy showed that the mitochondria were initially targeted by ALA-PDT, consistent with intracellular localization pattern of ALA-induced endogenous PpIX. This indicates that subcellular localization pattern of PpIX is an important determinant for its PDT efficiency in the 3 cell lines. Our finding suggests that future new photosensitizers with mitochondrially localizing properties may be designed for effective PDT.  相似文献   

15.
Limited depth of penetration significantly limits photodynamic therapy of nodular basal cell carcinoma (BCC) using topical δ(5)-aminolevulinic acid (ALA). To demonstrate safety and efficacy of orally administered ALA in inducing endogenous protoporphyrin IX (PpIX) production in BCC, 13 patients with BCC ingested ALA in a dose-escalation protocol. All dose ranges (10, 20 or 40 mg/kg single doses) resulted in formation of PpIX in human skin and BCC, measurable by in vivo fluorescence spectrophotometry. The PpIX fluorescence peaked in tumors before normal adjacent skin from 1 to 3 h after ALA ingestion. Gross fluorescence imaging of ex vivo specimens revealed greater PpIX fluorescence in tumor than normal skin only at the 40 mg/kg dose. Fluorescence microscopy confirmed this finding by showing distinct, full-thickness PpIX fluorescence in all subtypes of BCC only after ALA given at 40 mg/kg. Side effects were dose dependent and self limited. Photosensitivity lasting less than 24 h and nausea coinciding with peak skin PpIX fluorescence occurred at 20 and 40 mg/kg doses. After 40 mg/kg ALA, serum hepatic enzyme levels rose to a maximum within 24 h, then resolved over 1–3 weeks. Transient bilirubinuria occurred in two patients.  相似文献   

16.
Endogenously generated protoporphyrin IX (PpIX) from exogenous ALA can be an effective photosensitizer. PpIX accumulation is inversely dependent on available intracellular iron, which is required for the conversion of PpIX to heme. Iron also is necessary for cell replication. Since iron can be toxic, intracellular iron levels are tightly controlled. Activated and proliferating cells respond to the demand for intracellular iron by upregulating membrane expression of the transferrin receptor (CD71) which is needed for iron uptake. We predicted that activated lymphocytes (CD71 +) would preferentially accumulate PpIX because of their lower intracellular iron levels and because of competition for iron between ALA-induced heme production and cellular growth processes. Thus, the CD71+ cells could serve as PDT targets. Stimulation of human peripheral blood lymphocytes (PBL) with the mitogens, phytohemagglutinin A, concanavalin A and pokeweed prior to incubation with ALA results in PpIX accumulation correlating with level of activation. Activated lymphocytes expressing high levels of surface CD71 transferrin receptors generated more PpIX than those with low CD71 expression. Incubating activated cells in transferrin depleted medium (thereby decreasing the iron availability) further increased PpIX levels. Malignant, CD71 + T lymphocytes from a patient with cutaneous T-cell lymphoma (CTCL)/Sezary syndrome also accumulated increased PpIX levels in comparison to norma] lymphocytes. PDT of activated lymphocytes and Sezary cells after ALA incubation demonstrated preferential killing compared to normal, unstimulated PBL. These findings suggest a possible mechanism for the selectivity of ALA PDT for activated CD71+ cells. They also indicate a clinical use for ALA-PDT in therapy directed towards the malignant lymphocytes in leukemias and lymphomas, and as animmunomodulatory agent.  相似文献   

17.
A series of novel moxifloxacin/gatifloxacin‐1,2,3‐triazole‐isatin hybrids ( 8a – i ) were designed, synthesized, and screened for their in vitro anticancer activity in this paper. All of the synthesized hybrids were active against A549 and HepG2 cancer cell lines, whereas the parent drugs moxifloxacin and gatifloxacin were devoid of activity. Among them, hybrid 8i (IC50: 41.1–98.3 μM) showed considerable activity against A549, HepG2, and MCF‐7 cancer cell lines, and it was no inferior to Vorinostat (IC50: 64.32 to >100 μM) against the three cancer cell lines. Thus, this kind of hybrids has potentiality for discovery of new anticancer candidates for clinical deployment in the control and eradication of cancers.  相似文献   

18.
《Electrophoresis》2017,38(16):1988-1995
Inherent electrical properties of cells can be beneficial to characterize different cell lines and their response to experimental drugs. This paper presents a novel method to characterize the response of breast cancer cells to drug stimuli through use of off‐chip passivated‐electrode insulator‐based dielectrophoresis (OπDEP) and the application of AC electric fields. This work is the first to demonstrate the ability of OπDEP to differentiate between two closely related breast cancer cell lines, LCC1 and LCC9 while assessing their drug sensitivity to an experimental anti‐cancer agent, Obatoclax. Although both cell lines are derivatives of estrogen‐responsive MCF‐7 breast cancer cells, growth of LCC1 is estrogen independent and anti‐estrogen responsive, while LCC9 is both estrogen‐independent and anti‐estrogen resistant. Under the same operating conditions, LCC1 and LCC9 had different DEP profiles. LCC1 cells had a trapping onset (crossover) frequency of 700 kHz and trapping efficiencies between 30–40%, while LCC9 cells had a lower crossover frequency (100 kHz) and showed higher trapping efficiencies of 40–60%. When exposed to the Obatoclax, both cell lines exhibited dose‐dependent shifts in DEP crossover frequency and trapping efficiency. Here, DEP results supplemented with cell morphology and proliferation assays help us to understand the response of these breast cancer cells to Obatoclax.  相似文献   

19.
Protoporphyrin IX (PpIX) is produced in cells via the heme synthesis pathway, from the substrate aminolevulinic acid (ALA), and can be used for tumor detection, monitoring or photodynamic therapy. PpIX production varies considerably between tumor cell types, and determining the cell types and methods to optimize production is a central issue in properly utilizing this drug. A panel of eight cancer cell types was examined for PpIX production capacity, including breast, prostate, and brain cancer tumors, and the production varied up to 10-fold among cell types. A positive correlation was seen between mitochondrial content and naturally occurring PpIX prior to ALA administration, but mitochondrial content did not correlate to the yield of PpIX resulting from the addition of ALA. Interestingly, total cell size was positively correlated to the yield of PpIX from ALA administration. Addition of an iron chelator, 1,2-dimethyl-3-hydroxy-4-pyridone (L1) in combination with ALA allows the final step in the heme synthesis pathway, conversion of PpIX to heme, to be delayed, thereby further increasing the yield of PpIX. Those cell types that had the lowest ALA to PpIX production without L1 showed the largest percentage increase in production with L1. The study indicates that use of L1 in tumors with a lower innate production of PpIX with ALA alone may be the most productive approach to this combined delivery.  相似文献   

20.
A series of novel diethylene glycol tethered isatin‐1,2,3‐triazole‐coumarin hybrids 9a – l were designed, synthesized, and evaluated for their in vitro anticancer activities against HepG2 (liver carcinoma), Hela (cervical cancer), A549 (lung adenocarcinoma), DU145 (prostatic cancer), SKOV3 (ovarian carcinoma), MCF‐7 (breast cancer), and drug‐resistant MCF‐7/DOX (doxorubicin‐resistant MCF‐7) human cancer cell lines. The results showed that most of the synthesized hybrids exhibited considerable in vitro activities against the tested seven cancer cell lines, and these hybrids can be acted as starting points for further investigation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号