首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 142 毫秒
1.
Endogenously generated protoporphyrin IX (PpIX) from exogenous ALA can be an effective photosensitizer. PpIX accumulation is inversely dependent on available intracellular iron, which is required for the conversion of PpIX to heme. Iron also is necessary for cell replication. Since iron can be toxic, intracellular iron levels are tightly controlled. Activated and proliferating cells respond to the demand for intracellular iron by upregulating membrane expression of the transferrin receptor (CD71) which is needed for iron uptake. We predicted that activated lymphocytes (CD71 +) would preferentially accumulate PpIX because of their lower intracellular iron levels and because of competition for iron between ALA-induced heme production and cellular growth processes. Thus, the CD71+ cells could serve as PDT targets. Stimulation of human peripheral blood lymphocytes (PBL) with the mitogens, phytohemagglutinin A, concanavalin A and pokeweed prior to incubation with ALA results in PpIX accumulation correlating with level of activation. Activated lymphocytes expressing high levels of surface CD71 transferrin receptors generated more PpIX than those with low CD71 expression. Incubating activated cells in transferrin depleted medium (thereby decreasing the iron availability) further increased PpIX levels. Malignant, CD71 + T lymphocytes from a patient with cutaneous T-cell lymphoma (CTCL)/Sezary syndrome also accumulated increased PpIX levels in comparison to norma] lymphocytes. PDT of activated lymphocytes and Sezary cells after ALA incubation demonstrated preferential killing compared to normal, unstimulated PBL. These findings suggest a possible mechanism for the selectivity of ALA PDT for activated CD71+ cells. They also indicate a clinical use for ALA-PDT in therapy directed towards the malignant lymphocytes in leukemias and lymphomas, and as animmunomodulatory agent.  相似文献   

2.
Protoporphyrin IX (PpIX), an endogenously synthesized photosensitizer, can transiently accumulate in activated lymphocytes following administration of the heme precursor 5-aminolevulinic acid (ALA). One possible mechanism of this in lymphocyte accumulation is that actively dividing cells use intracellular iron stores for cytochrome and DNA synthesis and thus do not inactivate PpIX, the photoactive precursor of heme, by iron incorporation. This selective accumulation in activated cells should allow targeting by photodynamic therapy (PDT). To determine the effect of this accumulation, we studied PDT effects on the in vitro correlate of transplantation rejection: the one-way mixed lymphocyte reaction (MLR). Selective phototoxicity was determined by photoirradiating ALA-treated, MLR-activated cells and measuring subsequent stimulation either in a secondary MLR or with phytohemagglutinin (PHA). We found that proliferation of MLR-activated lymphocytes incubated with ALA and treated with light was only 12-20% of controls (ALA+, no light) after rechallenge with the stimulator cells (P < 0.05), although their response to nonspecific PHA stimulation was similar to controls. Thus alloantigen-specific depletion was shown. The data suggest a role for ALA-PDT in the treatment of diseases that require the selective elimination of activated lymphocytes and possibly as an immunomodulator.  相似文献   

3.
Topical or systemic administration of 5‐aminolevulinic acid (ALA) and its esters results in increased production and accumulation of protoporphyrin IX (PpIX) in cancerous lesions allowing effective application of photodynamic therapy (PDT). The large concentrations of exogenous ALA practically required to bypass the negative feedback control exerted by heme on enzymatic ALA synthesis and the strong dimerization propensity of ALA are shortcomings of the otherwise attractive PpIX biosynthesis. To circumvent these limitations and possibly enhance the phototoxicity of PpIX by adjuvant chemotherapy, covalent bonding of PpIX with a drug carrier, β‐cyclodextrin (βCD) was implemented. The resulting PpIX + βCD product had both carboxylic termini of PpIX connected to the CD. PpIX + βCD was water soluble, was found to preferentially localize in mitochondria rather than in lysosomes both in MCF7 and DU145 cell lines while its phototoxiciy was comparable to that of PpIX. Moreover, PpIX + βCD effectively solubilized the breast cancer drug tamoxifen metabolite N‐desmethyltamoxifen (NDMTAM) in water. The PpIX + βCD/NDMTAM complex was readily internalized by both cell lines employed. Furthermore, the multimodal action of PpIX + βCD was demonstrated in MCF7 cells: while it retains the phototoxic profile of PpIX and its fluorescence for imaging purposes, PpIX + βCD can efficiently transport tamoxifen citrate intracellularly and confer cell death through a synergy of photo‐ and chemotoxicity.  相似文献   

4.
Photodynamic therapy (PDT) with topical aminolevulinic acid (ALA) has been shown in previous studies to improve psoriasis. However, topical ALA-PDT may not be practical for the treatment of extensive disease. In order to overcome this limitation we have explored the potential use of oral ALA administration in psoriatic patients. Twelve patients with plaque psoriasis received a single oral ALA dose of 10, 20 or 30 mg/kg followed by measurement of protoporphyrin IX (PpIX) fluorescence in the skin and circulating blood cells. Skin PpIX levels were determined over time after ALA administration by the quantification of the 635 nm PpIX emission peak with in vivo fluorescence spectroscopy under 442 nm laser excitation. Administration of ALA at 20 and 30 mg/kg induced preferential accumulation of PpIX in psoriatic as opposed to adjacent normal skin. Peak fluorescence intensity in psoriatic and normal skin occurred between 3 and 5 h after the administration of 20 and 30 mg/kg, respectively. Ratios of up to 10 for PpIX fluorescence between psoriatic versus normal skin were obtained at the 30 mg/kg dose of ALA. Visible PpIX fluorescence was also observed on normal facial skin, and nonspecific skin photosensitivity occurred only in patients who received the 20 or 30 mg/kg doses. PpIX fluorescence intensity was measured in circulating blood cells by flow cytometry. PpIX fluorescence was higher in monocytes and neutrophils as compared to CD4+ and CD8+ T lymphocytes. PpIX levels in these cells were higher in patients who received higher ALA doses and peaked between 4 and 8 h after administration of ALA. There was only a modest increase in PpIX levels in circulating CD4+ and CD8+ T lymphocytes. In conclusion oral administration of ALA induced preferential accumulation of PpIX in psoriatic plaques as compared to adjacent normal skin suggesting that PDT with oral ALA should be further explored for the treatment of psoriasis.  相似文献   

5.
Aminolevulinic acid photodynamic therapy (ALA-PDT) is a cancer therapy that combines the selective accumulation of a photosensitizer in tumor tissue with visible light (and tissue oxygen) to produce reactive oxygen species. This results in cellular damage and ablation of tumor tissue. The use of iron chelators in combination with ALA has the potential to increase the accumulation of the photosensitizer protoporphyrin IX (PpIX) by reducing its bioconversion to heme. This study compares directly for the first time the effects of the novel hydroxypyridinone iron chelating agent CP94 and the more clinically established iron chelator desferrioxamine (DFO) on the enhancement of ALA and methyl-aminolevulinate (MAL)-induced PpIX accumulations in cultured human cells. Cultured human cells were incubated with a combination of ALA, MAL, CP94 and DFO concentrations; the resulting PpIX accumulations being quantified fluorometrically. The use of iron chelators in combination with ALA or MAL was shown to significantly increase the amount of PpIX accumulating in the fetal lung fibroblasts and epidermal carcinoma cells; while minimal enhancement was observed in the normal skin cells investigated (fibroblasts and keratinocytes). Where enhancement was observed CP94 was shown to be significantly superior to DFO in the enhancement of PpIX accumulation.  相似文献   

6.
Aminolevulinic acid (ALA) is a prodrug that is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) for tumor fluorescence detection and photodynamic therapy (PDT). The iron chelator deferoxamine (DFO) has been widely used to enhance PpIX accumulation by inhibiting the iron‐dependent bioconversion of PpIX to heme, a reaction catalyzed by ferrochelatase (FECH). Tumor response to DFO treatment is known to be highly variable, and some tumors even show no response. Given the fact that tumors often exhibit reduced FECH expression/enzymatic activity, we examined how reducing FECH level affected the DFO enhancement effect. Our results showed that reducing FECH level by silencing FECH in SkBr3 breast cancer cells completely abrogated the enhancement effect of DFO. Although DFO enhanced ALA‐PpIX fluorescence and PDT response in SkBr3 vector control cells, it caused a similar increase in MCF10A breast epithelial cells, resulting in no net gain in the selectivity toward tumor cells. We also found that DFO treatment induced less increase in ALA‐PpIX fluorescence in tumor cells with lower FECH activity (MDA‐MB‐231, Hs 578T) than in tumor cells with higher FECH activity (MDA‐MB‐453). Our study demonstrates that FECH activity is an important determinant of tumor response to DFO treatment.  相似文献   

7.
As a tumor photodiagnostic agent, 5-aminolevulinic acid (ALA) is metabolized in the heme biosynthesis pathway to produce protoporphyrin IX (PpIX) with fluorescence. ALA-PpIX fluorescence was evaluated in human renal cell carcinoma (RCC) cell lines and non-tumor HK-2 cell lines. We found that extracellular PpIX level was correlated with ABCG2 activity, illustrating its importance as a PpIX efflux transporter. Extracellular PpIX was also related to the Km of ferrochelatase (FECH) that chelates PpIX with ferrous iron to form heme. The Vmax of FECH was higher in all RCC cell lines tested than in the HK-2 cell line. TCGA dataset analysis indicates a positive correlation between FECH expression and RCC patient survival. These findings suggest FECH as an important biomarker in RCC. Effects of iron chelator deferoxamine (DFO) on the enhancement of PpIX fluorescence were assessed. DFO increased intracellular PpIX in both tumor and non-tumor cells, resulting in no gain in tumor/non-tumor fluorescence ratios. DFO appeared to increase ALA-PpIX more at 1-h than at 4-h treatment. There was an inverse correlation between ALA-PpIX fluorescence and the enhancement effect of DFO. These results suggest that enhancement of ALA-PpIX by DFO may be limited by the availability of ferrous iron in mitochondria following ALA administration.  相似文献   

8.
Aminolevulinic acid (ALA)‐mediated protoporphyrin IX (PpIX) production is being explored for tumor fluorescence imaging and photodynamic therapy (PDT). As a prodrug, ALA is converted in heme biosynthesis pathway to PpIX with fluorescent and photosensitizing properties. To better understand the role of heme biosynthesis enzymes in ALA‐mediated PpIX fluorescence and PDT efficacy, we used lentiviral shRNA to silence the expression of porphobilinogen synthase (PBGS), porphobilinogen deaminase (PBGD) and ferrochelatase (FECH) in SkBr3 human breast cancer cells. PBGS and PBGD are the first two cytosolic enzymes involved in PpIX biosynthesis, and FECH is the enzyme responsible for converting PpIX to heme. PpIX fluorescence was examined by flow cytometry and confocal fluorescence microscopy. Cytotoxicity was assessed after ALA‐mediated PDT. Silencing PBGS or PBGD significantly reduced ALA‐stimulated PpIX fluorescence, whereas silencing FECH elevated basal and ALA‐stimulated PpIX fluorescence. However, compared with vector control cells, the ratio of ALA‐stimulated fluorescence to basal fluorescence without ALA was significantly reduced in all knockdown cell lines. PBGS or PBGD knockdown cells exhibited significant resistance to ALA‐PDT, while increased sensitivity to ALA‐PDT was found in FECH knockdown cells. These results demonstrate the importance of PBGS, PBGD and FECH in ALA‐mediated PpIX fluorescence and PDT efficacy.  相似文献   

9.
Light fractionation does not enhance the response to photodynamic therapy (PDT) after topical methyl-aminolevulinate (MAL) application, whereas it is after topical 5-aminolevulinic acid (ALA). The differences in biophysical and biochemical characteristics between MAL and ALA may result in differences in localisation that cause the differences in response to PDT. We therefore investigated the spatial distribution of protoporphyrin IX (PpIX) fluorescence in normal mouse skin using fluorescence microscopy and correlated that with the PDT response histologically observed at 2.5, 24 and 48h after PDT. As expected high fluorescence intensities were observed in the epidermis and pilosebaceous units and no fluorescence in the cutaneous musculature after both MAL and ALA application. The dermis showed localised fluorescence that corresponds to the cytoplasma of dermal cells like fibroblast and mast cells. Spectral analysis showed a typical PpIX fluorescence spectrum confirming that it is PpIX fluorescence. There was no clear difference in the depth and spatial distribution of PpIX fluorescence between the two precursors in these normal mouse skin samples. This result combined with the conclusion of Moan et al. that ALA but not MAL is systemically distributed after topical application on mouse skin [Moan et al., Pharmacology of protoporphyrin IX in nude mice after application of ALA and ALA esters, Int. J. Cancer 103 (2003) 132-135] suggests that endothelial cells are involved in increased response of tissues to ALA-PDT using light fractionation. Histological analysis 2.5h after PDT showed more edema formation after ALA-PDT compared to MAL-PDT that was not accompanied by a difference in the inflammatory response. This suggests that endothelial cells respond differently to ALA and MAL-PDT. Further investigation is needed to determine the role of endothelial cells in ALA-PDT and the underlying mechanism behind the increased effectiveness of light fractionation using a dark interval of 2h found after ALA but not after MAL-PDT.  相似文献   

10.
Protoporphyrin IX (PpIX) is produced in cells via the heme synthesis pathway, from the substrate aminolevulinic acid (ALA), and can be used for tumor detection, monitoring or photodynamic therapy. PpIX production varies considerably between tumor cell types, and determining the cell types and methods to optimize production is a central issue in properly utilizing this drug. A panel of eight cancer cell types was examined for PpIX production capacity, including breast, prostate, and brain cancer tumors, and the production varied up to 10-fold among cell types. A positive correlation was seen between mitochondrial content and naturally occurring PpIX prior to ALA administration, but mitochondrial content did not correlate to the yield of PpIX resulting from the addition of ALA. Interestingly, total cell size was positively correlated to the yield of PpIX from ALA administration. Addition of an iron chelator, 1,2-dimethyl-3-hydroxy-4-pyridone (L1) in combination with ALA allows the final step in the heme synthesis pathway, conversion of PpIX to heme, to be delayed, thereby further increasing the yield of PpIX. Those cell types that had the lowest ALA to PpIX production without L1 showed the largest percentage increase in production with L1. The study indicates that use of L1 in tumors with a lower innate production of PpIX with ALA alone may be the most productive approach to this combined delivery.  相似文献   

11.
We present a mathematical layer model to quantitatively calculate the diffusion of 5-aminolevulinic acid (ALA) in the skin in vivo, its uptake into the cells and its conversion to protoporphyrin IX (PpIX) and subsequently to heme. The model is a modification and extension of a recently presented three-compartment model. The diffusion of ALA in the skin (epidermis, dermis) is described by the time-dependent diffusion equation, and the sink in this equation accounts for ALA uptake in the cells. As boundary conditions, we use the ALA flux across the human stratum corneum (SC) in vitro during passive or iontophoretic ALA delivery as measured in vitro. Besides the diffusion equation, the model includes three additional equations, similar in form to those of the three-compartment model but with a different interpretation. Our additional equations are supposed to describe, respectively, the conversion of ALA in the cytoplasm to some intermediate compound in the mitochondria and the conversion of the latter to PpIX and of PpIX to heme. The first conversion is a process of the Michaelis-Menten type, the other two are first-order rate processes. When fitted to the published data of PpIX fluorescence from normal human skin following iontophoresis of ALA, the model yields the tissue concentration of PpIX as a function of time after ALA application. The computed concentrations are in good agreement with the published phototoxic concentrations of PpIX in the tissues obtained from extraction. The model parameters obtained from the fit are subsequently used to compute the PpIX concentration in normal human skin after 4 h topical application of 10, 20 and 40% ALA. This again yields the PpIX concentrations in tissue, in good agreement with the published values. The saturation of the PpIX concentration as a function of applied ALA concentration is calculated and agrees with clinical observations on the effectiveness of photodynamic therapy. Photobleaching is simulated, with subsequent resynthesis of PpIX in qualitative agreement with experiment. Finally, the model predicts that only 2.5-3.5% of the ALA entering the skin after passing the SC is converted to PpIX. The layered model is a considerable simplification of real skin, but its successful qualitative and quantitative reproduction of experimental data may encourage further studies to test and refine the model to improve our understanding of the kinetics of ALA and the synthesis of PpIX in the skin.  相似文献   

12.
Limited depth of penetration significantly limits photodynamic therapy of nodular basal cell carcinoma (BCC) using topical δ(5)-aminolevulinic acid (ALA). To demonstrate safety and efficacy of orally administered ALA in inducing endogenous protoporphyrin IX (PpIX) production in BCC, 13 patients with BCC ingested ALA in a dose-escalation protocol. All dose ranges (10, 20 or 40 mg/kg single doses) resulted in formation of PpIX in human skin and BCC, measurable by in vivo fluorescence spectrophotometry. The PpIX fluorescence peaked in tumors before normal adjacent skin from 1 to 3 h after ALA ingestion. Gross fluorescence imaging of ex vivo specimens revealed greater PpIX fluorescence in tumor than normal skin only at the 40 mg/kg dose. Fluorescence microscopy confirmed this finding by showing distinct, full-thickness PpIX fluorescence in all subtypes of BCC only after ALA given at 40 mg/kg. Side effects were dose dependent and self limited. Photosensitivity lasting less than 24 h and nausea coinciding with peak skin PpIX fluorescence occurred at 20 and 40 mg/kg doses. After 40 mg/kg ALA, serum hepatic enzyme levels rose to a maximum within 24 h, then resolved over 1–3 weeks. Transient bilirubinuria occurred in two patients.  相似文献   

13.
Barrett's esophagus (BE) can experimentally be treated with 5-aminolevulinic acid-based photodynamic therapy (ALA-PDT), in which ALA, the precursor of the endogenous photosensitizer protoporphyrin IX (PpIX) and subsequent irradiation with laser light are applied to destroy the (pre)malignant tissue. Accurate dosimetry is critical for successful ALA-PDT. Here, in vivo dosimetry and kinetics of PpIX fluorescence photobleaching were studied in a rat model of BE. The fluence and fluence rate were standardized in vivo and PpIX fluorescence was measured simultaneously at the esophageal wall during ALA-PDT and plotted against the delivered fluence rather than time. Rats with BE were administered 200 mg kg(-1) ALA (n = 17) or served as control (n = 4). Animals were irradiated with 633 nm laser light at a measured fluence rate of 75 mW cm(-2) and a fluence of 54 J cm(-2). Large differences were observed in the kinetics of PpIX fluorescence photobleaching in different animals. High PpIX fluorescence photobleaching rates corresponded with tissue ablation, whereas low rates corresponded with no damage to the epithelium. Attempts to influence tissue oxygenation by varying balloon pressure and ventilation were shown not to be directly responsible for the differences in effect. In conclusion, in vivo dosimetry is feasible in heterogeneous conditions such as BE, and PpIX fluorescence photobleaching is useful to predict the tissue response to ALA-PDT.  相似文献   

14.
Increasing importance is being given to the stimulation of Th1 response in cancer immunotherapy because its presence can shift the direction of adaptive immune responses toward protective immunity. Based on chemokine receptor expression, CXCR3+CCR4-CD4+ T cells as Th1-type cells were investigated its capacity in monocyte-derived dendritic cell (DC) maturation and polarization, and induction of antigen specific cytotoxic T lymphocytes (CTL) in vitro. The levels of IL-4, IL-5 and IL-10 were decreased to the basal level compared with high production of IFN-γ, TNF-α, and IL-2 in CXCR3+CCR4-CD4+ T cells stimulated with anti-CD3 and anti-CD28 antibodies. Co-incubation of activated CD4+ or CXCR3+CCR4-CD4+ T cells with DC (CD4+/DC or CXCR3+CD4+/DC, respectively) particularly up-regulated IL-12 and CD80 expression compared with DC matured with TNF-α and LPS (mDC). Although there was no significant difference between the effects of the CXCR3+CCR4-CD4+ and CD4+ T cells on DC phenotype expression, CXCR3+CD4+/DC in CTL culture were able to expand number of CD8+ T cells and increased frequencies of IFN-γ secreting cells and overall cytolytic activity against tumor antigen WT-1. These results demonstrated that the selective addition of CXCR3+CCR4-CD4+ T cells to CTL cultures could enhance the induction of CTLs by DC in vitro, and implicated on a novel strategy for adoptive T cell therapy.  相似文献   

15.
Protoporphyrin IX (PpIX) fluorescence was measured at different depths in a subcutaneous amelanotic melanoma model (LOX) in mice. PpIX was induced by topical application of 5‐aminolevulinic acid (ALA) and two of its derivatives, the methylester (MAL) and hexylester (HAL) onto the normal skin covering the tumor. The PpIX fluorescence intensity on the surface of the tumors was the highest for HAL, followed by ALA and MAL. Using equimolar concentrations (0.5 mmol g?1), HAL induced nearly twice as much fluorescence as ALA did. The depth profile of PpIX fluorescence was measured at different layers of the tumor, which was carefully sliced and controlled in situ ex vivo. The PpIX fluorescence was mainly localized within the upper 2 mm of the tissue for ALA and within 1 mm for MAL and HAL. There were no significant differences in the shape of the fluorescence excitation spectra, but the long wavelength excitation peak (633 nm) was so weak that these results are unreliable for depth estimation. When considering the low fluorescence intensity (around 5% of the intensity at the tumor surface), the actual penetration depth of HAL was comparable to that of ALA. The fluorescence after topical application of ALA and HAL was significantly above the background level down to a depth of around 6 mm, and there were traces of PpIX fluorescence even at the tumor base (10 mm). The fluorescence after topical application of MAL was detectable down to 1 mm. In the depth of 2–6 mm, the fluorescence was slightly higher for HAL than for ALA. Using the estimated diffusion coefficients for topically applied ALA (0.16 ± 0.03 mm2 h?1), MAL (0.045 ± 0.005 mm2 h?1) and HAL (0.037 ± 0.003 mm2 h?1), the behavior of the drugs after different application times could be estimated in this tumor model.  相似文献   

16.
Many different types of mammalian cells accumulate fluorescing and photosensitizing concentrations of protoporphyrin IX (PpIX) when exposed to exogenous 5-aminolevulinic acid (ALA) in vivo or in vitro. Most types of malignant cells accumulate substantially more ALA-induced PpIX than do the normal cells from which they arose. Most types of malignant cells also are less differentiated than their normal counterparts. We therefore considered the possibility that malignant cells demonstrate a malignant ALA phenotype (accumulate abnormally large amounts of PpIX when exposed to exogenous ALA) as a direct consequence of their less differentiated state. Human promyelocyte cell line HL-60 and mouse preadipocyte cell line 3T3 L1 were induced to differentiate by exposing them to inducing agents in vitro. The HL-60 cells accumulated less ALA-induced PpIX when differentiated, but the 3T3 L1 cells accumulated more. It appears then that changes in the ALA phenotype with changes in the state of differentiation are cell-type specific. The decreased accumulation of ALA-induced PpIX that accompanied differentiation of the promyelocytic leukemia cells may have clinical application for rapid quantitation of the response of myelocytic leukemia patients to differentiation therapy.  相似文献   

17.
The tissue photosensitizer protoporphyrin IX (PpIX) is an immediate precursor of heme in the biosynthetic pathway for heme. In certain types of cells and tissues, the rate of synthesis of PpIX is determined by the rate of synthesis of 5-aminolevulinic acid (ALA), which in turn is regulated via a feedback control mechanism governed by the concentration of free heme. The presence of exogenous ALA bypasses the feedback control, and thus may induce the intracellular accumulation of photosensitizing concentrations of PpIX. However, this occurs only in certain types of cells and tissues. The resulting tissue-specific photosensitization provides a basis for using ALA-induced PpIX for photodynamic therapy. The topical application of ALA to certain malignant and non-malignant lesions of the skin can induce a clinically useful degree of lesion-specific photosensitization. Superficial basal cell carcinomas showed a complete response rate of approximately 79% following a single exposure to light. Recent preclinical studies in experimental animals and human volunteers indicate that ALA can induce a localized tissue-specific photosensitization if administered by intradermal injection. A generalized but still quite tissue-specific photosensitization may be induced if ALA is administered by either subcutaneous or intraperitoneal injection or by mouth. This opens the possibility of using ALA-induced PpIX to treat tumors that are too thick or that lie too deep to be accessible to either topical or locally injected ALA.  相似文献   

18.
Photodynamic therapy (PDT) with the pro-drugs 5-aminolevulinic acid (ALA) or methyl aminolevulinate (MAL) utilizes the combined interaction of a photosensitizer, light and molecular oxygen to ablate tumor tissue. To potentially increase accumulation of the photosensitizer, protoporphyrin IX (PpIX), within tumor cells an iron chelator can be employed. This study analyzed the effects of ALA/MAL-induced PDT combined with the iron chelator 1, 2-diethyl-3-hydroxypyridin-4-one hydrochloride (CP94) on the accumulation of PpIX in human glioma cells in vitro. Cells were incubated for 0, 3 and 6 h with various concentrations of ALA/MAL with or without CP94 and the resulting accumulations of PpIX, which naturally fluoresces, were quantified prior to and following light irradiation. In addition, counts of viable cells were recorded. The use of CP94 in combination with ALA/MAL produced significant enhancements of PpIX fluorescence in human glioma cells. At the highest concentrations of each prodrug, CP94 enhanced PpIX fluorescence significantly at 3 h for ALA and by more than 50% at 6 h for MAL. Cells subsequently treated with ALA/MAL-induced PDT in combination with CP94 produced the greatest cytotoxicity. It is therefore concluded that with further study CP94 may be a useful adjuvant to photodiagnosis and/or PpIX-induced PDT treatment of glioma.  相似文献   

19.
5-Aminolevulinic acid (ALA) is a natural precursor of protoporphyrin IX (PpIX) and heme in cells. Photodynamic therapy (PDT) utilizes a metabolic imbalance in cancer cells, leading to increased PpIX generation from exogenous ALA. Due to chemical instability of ALA in therapeutic concentrations at pH values larger than 5.0 and at high temperatures, it looses its activity by spontaneous dimerization to 2,5-dicarboxyethyl-3,6-dihydropyrazine (DHPY). ALA esters are now supplementing ALA in PDT, but little is known about their stability. We have studied the stability of ALA and its methyl ester (MAL) stored under different conditions (temperatures, pH values) by measuring their ability to generate PpIX. 100mM solutions of both compounds were found to be stable at pH 4 and at 4 degrees C. However, at pH 5.5 they lost almost 10% of the initial activity during 5days of storage at 4 degrees C. The fastest decay of ALA and MAL was seen at pH 7.4 and at 37 degrees C, and followed first order kinetics. At pH 7.4 and at 4 degrees C MAL lost its PpIX producing ability more slowly than at 37 degrees C. Our work shows that solutions should be prepared immediately before use and stored at low temperatures. The pH of stock solutions should not exceed 5.  相似文献   

20.
Protoporphyrin IX (PpIX) produced from exogenous, orally administered 5-aminolevulinic acid (ALA) displays high tumor-selective uptake and is being successfully employed for fluorescence-guided resection (FGR) of human malignant gliomas. Furthermore, the phototoxicity of PpIX can be utilized for photodynamic therapy (PDT) of brain tumors, which has been shown previously. Here, the absolute PpIX concentration in human brain tissue was investigated following oral ALA administration (20 mg kg−1 b.w.). An extraction procedure was used to quantify PpIX in macroscopic tissue samples, weighing 0.013–0.214 g, obtained during FGR. The PpIX concentration was significantly higher in vital grade IV tumors (5.8 ± 4.8 μm , mean ± SD, range 0–28.2 μm , n = 8) as compared with grade III tumors (0.2 ± 0.4 μm , mean ± SD, range 0–0.9 μm , n = 4). There was also a large heterogeneity within grade IV tumors with PpIX displaying significantly lower levels in infiltration zones and necrotic regions as compared with vital tumor parts. The average PpIX concentration in vital grade IV tumor parts was in the range previously shown sufficient for PDT-induced tissue damage following irradiation. However, the feasibility of PDT for grade III brain tumors and for grade IV brain tumors displaying mainly necrotic tissue areas without solid tumor parts needs to be further investigated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号