首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nowadays, designing chaotic systems with hidden attractor is one of the most interesting topics in nonlinear dynamics and chaos. In this paper, a new 4D chaotic system is proposed. This new chaotic system has no equilibria, and so it belongs to the category of systems with hidden attractors. Dynamical features of this system are investigated with the help of its state-space portraits, bifurcation diagram, Lyapunov exponents diagram, and basin of attraction. Also a hardware realisation of this system is proposed by using field programmable gate arrays (FPGA). In addition, an electronic circuit design for the chaotic system is introduced.  相似文献   

2.
This article reports a sudden chaotic attractor change in a system described by a conservative and dissipative map concatenation. When the driving parameter passes a critical value, the chaotic attractor suddenly loses stability and turns into a transient chaotic web. The iterations spend super-long random jumps in the web, finally falling into several special escaping holes. Once in the holes, they are attracted monotonically to several periodic points. Following Grebogi, Ott, and Yorke, we address such a chaotic attractor change as a crisis. We numerically demonstrate that phase space areas occupied by the web and its complementary set (a fat fractal forbidden net) become the periodic points' “riddled-like” attraction basins. The basin areas are dominated by weaker dissipation called “quasi-dissipation”. Small areas, serving as special escape holes, are dominated by classical dissipation and bound by the forbidden region, but only in each periodic point's vicinity. Thus the crisis shows an escape from a riddled-like attraction basin. This feature influences the approximation of the scaling behavior of the crisis's averaged lifetime, which is analytically and numerically determined as 〈τ〉∝(b-b0)γ, where b0 denotes the control parameter's critical threshold, and γ≃-1.5.  相似文献   

3.
We report the existence of chaotic itinerancy in a coupled Milnor attractor system. The attractor ruins consist of tori or local chaos generated from the original Milnor attractors. The chaotic behavior exhibited by a single orbit can be considered a "nonstationary" state, due to the extremely slow convergence of the Lyapunov exponents, but the behavior averaged over randomly chosen initial conditions is consistent with the limit theorem. We present as a possibly new indication of chaotic itinerancy the presence of slow decay of large fluctuations of the largest Lyapunov exponent.  相似文献   

4.
常微分方程系统中内部激变现象的研究   总被引:1,自引:0,他引:1       下载免费PDF全文
洪灵  徐健学 《物理学报》2000,49(7):1228-1234
应用广义胞映射图论方法研究常微分方程系统的激变.揭示了边界激变是由于混沌吸引子与 在其吸引域边界上的周期鞍碰撞产生的,在这种情况下,当系统参数通过激变临界值时,混 沌吸引子连同它的吸引域突然消失,在相空间原混沌吸引子的位置上留下了一个混沌鞍.研 究混沌吸引子大小(尺寸和形状)的突然变化,即内部激变.发现这种混沌吸引子大小的突然 变化是由于混沌吸引子与在其吸引域内部的混沌鞍碰撞产生的,这个混沌鞍是相空间非吸引 的不变集,代表内部激变后混沌吸引子新增的一部分.同时研究了这个混沌鞍的形成与演化. 给出了对永久自循环胞集和瞬态自循环胞集进行局部细化的方法. 关键词: 广义胞映射 有向图 激变 混沌鞍  相似文献   

5.
Anirban Ray 《Physica A》2010,389(21):5077-5083
Properties of non-stationary dynamical systems are studied using the concept of a snapshot attractor which takes into account a large number of initial conditions within the basin of attraction. In this paper, both autonomous and non-autonomous systems are considered. We have discussed three different ways of inducing non-stationarity in a chaotic system—(a) when the parameter changes in a linear fashion, (b) when the parameter changes in a random fashion and (c) when it is governed by an equation inducing a chaotic change in it. Here all the variations are with respect to time. Though the first and second situations have already been considered in Romeiras et al. (1990) [1] and Serquina et al. (2008) [2], the last one has never been considered before. In each case the basic fractal properties and the famous Pesin identity are proved numerically. The Lyapunov exponents, which are calculated via an averaging procedure, lead to the expected values.  相似文献   

6.
Noise-induced escape from the basin of attraction of a quasi-hyperbolic chaotic attractor in the Lorenz system is considered. The investigation is carried out in terms of the theory of large fluctuations by experimentally analyzing the escape prehistory. The optimal escape trajectory is shown to be unique and determined by the saddle-point manifolds of the Lorenz system. We established that the escape process consists of three stages and that noise plays a fundamentally different role at each of these stages. The dynamics of fluctuational escape from a quasi-hyperbolic attractor is shown to differ fundamentally from the dynamics of escape from a nonhyperbolic attractor considered previously [1]. We discuss the possibility of analytically describing large noise-induced deviations from a quasi-hyperbolic chaotic attractor and outline the range of outstanding problems in this field.  相似文献   

7.
一类新的边界激变现象:混沌的边界激变   总被引:6,自引:3,他引:3       下载免费PDF全文
洪灵  徐健学 《物理学报》2001,50(4):612-618
混沌吸引子的激变是一类普遍现象.借助于广义胞映射图论(generalized cell mapping digraph)方法发现了嵌入在分形吸引域边界内的混沌鞍,这个混沌鞍由于碰撞混沌吸引子导致混沌吸引子完全突然消失,是一类新的边界激变现象,称为混沌的边界激变.可以证明混沌的边界激变是由于混沌吸引子与分形吸引域边界上的混沌鞍相碰撞产生的,在这种情况下,当系统参数通过激变临界值时,混沌吸引子连同它的吸引域突然消失,同时这个混沌鞍也突然增大 关键词: 广义胞映射 有向图 激变 混沌鞍  相似文献   

8.
S Rajasekar 《Pramana》1995,44(2):121-131
In this paper we investigate numerically the possibility of conversion of a chaotic attractor into a nonchaotic but strange attractor in both a discrete system (an one dimensional map) and in a continuous dynamical system — Bonhoeffer—van der Pol oscillator. In these systems we show suppression of chaotic property, namely, the sensitive dependence on initial states, by adding appropriate i) chaotic signal and ii) Gaussian white noise. The controlled orbit is found to be strange but nonchaotic with largest Lyapunov exponent negative and noninteger correlation dimension. Return map and power spectrum are also used to characterize the strange nonchaotic attractor.  相似文献   

9.
李军  后新燕 《物理学报》2019,68(10):100503-100503
利用指数加权在线核序列极限学习机(exponential weighted online sequential extreme learning machine with kernel, EW-KOSELM)辨识算法,开展了针对混沌动力学系统的动态重构研究. EW-KOSELM算法将核递归最小二乘(kernel recursive least squares, KRLS)算法直接延伸至在线ELM (extreme learning machine)框架中,通过引入遗忘因子削弱了旧数据的影响,并基于"固定预算(fixed-budget, FB)"内存技术,应对在线核学习算法所固有的规模不断增长的计算困难.将所提辨识算法应用于Duffing-Ueda振子的混沌动力学系统数值仿真实例中,对基于FB-EW-KOSELM的辨识模型与原系统的动态性能进行了定性与定量的分析校验,定性校验准则是基于对比辨识模型与原系统吸引子(轨迹嵌入)、庞加莱映射、分岔图、极限环完成的,定量校验准则包括对比辨识模型与原系统的李雅普诺夫指数与关联维.进一步将其分别应用于来自测量蔡氏电路产生双涡卷吸引子与螺旋吸引子的实测数据实验及某一实际混沌电路所产生的时间序列中,对于具有低信噪比的实测电压或电流数据还需进行了小波降噪预处理.通过分析辨识模型重构吸引子,实验结果表明,FB-EW-KOSELM算法具有良好的动态重构性能,能精确地再生出展示混沌动态行为的过程非线性模型,且具有与原混沌系统非常接近的动态不变性指标.  相似文献   

10.
We show that long chaotic transients dominate the dynamics of randomly diluted networks of pulse-coupled oscillators. This contrasts with the rapid convergence towards limit cycle attractors found in networks of globally coupled units. The lengths of the transients strongly depend on the network connectivity and vary by several orders of magnitude, with maximum transient lengths at intermediate connectivities. The dynamics of the transients exhibit a novel form of robust synchronization. An approximation to the largest Lyapunov exponent characterizing the chaotic nature of the transient dynamics is calculated analytically.  相似文献   

11.
The largest Lyapunov exponent is an important invariant of detecting and characterizing chaos produced from a dynamical system. We have found analytically that the largest Lyapunov exponent of the small-scale wavelet transform modulus of a dynamical system is the same as the system's largest Lyapunov exponent, both discrete map and continuous chaotic attractor with one or two positive Lyapunov exponents. This property has been used to estimate the largest Lyapunov exponent of chaotic time series with several kinds of strong additive noise.  相似文献   

12.
For a dynamical system described by a set of autonomous differential equations, an attractor can be either a point, or a periodic orbit, or even a strange attractor. Recently a new chaotic system with only one parameter has been presented where besides a point attractor and a chaotic attractor, it also has a coexisting attractor limit cycle which makes evident the complexity of such a system. We study using analytic tools the dynamics of such system. We describe its global dynamics near the infinity, and prove that it has no Darboux first integrals.  相似文献   

13.
Some dynamical properties for a bouncing ball model are studied. We show that when dissipation is introduced the structure of the phase space is changed and attractors appear. Increasing the amount of dissipation, the edges of the basins of attraction of an attracting fixed point touch the chaotic attractor. Consequently the chaotic attractor and its basin of attraction are destroyed given place to a transient described by a power law with exponent −22. The parameter-space is also studied and we show that it presents a rich structure with infinite self-similar structures of shrimp-shape.  相似文献   

14.
This Letter proposes a novel three-dimensional autonomous system which has complex chaotic dynamics behaviors and gives analysis of novel system. More importantly, the novel system can generate three-layer chaotic attractor, four-layer chaotic attractor, five-layer chaotic attractor, multilayer chaotic attractor by choosing different parameters and initial condition. We analyze the new system by means of phase portraits, Lyapunov exponent spectrum, fractional dimension, bifurcation diagram and Poincaré maps of the system. The three-dimensional autonomous system is totally different from the well-known systems in previous work. The new multilayer chaotic attractors are also worth causing attention.  相似文献   

15.
In this paper we examine a very simple and elegant example of high-dimensional chaos in a coupled array of flows in ring architecture that is cyclically symmetric and can also be viewed as an N-dimensional spatially infinite labyrinth (a "hyperlabyrinth"). The scaling laws of the largest Lyapunov exponent, the Kaplan-Yorke dimension, and the metric entropy are investigated in the high-dimensional limit (3相似文献   

16.
Some dynamical properties for a problem concerning the acceleration of particles in a wave packet are studied. The model is described in terms of a two-dimensional nonlinear map obtained from a Hamiltonian which describes the motion of a relativistic standard map. The phase space is mixed in the sense that there are regular and chaotic regions coexisting. When dissipation is introduced, the property of area preservation is broken and attractors emerge. We have shown that a tiny increase of the dissipation causes a change in the phase space. A chaotic attractor as well as its basin of attraction are destroyed thereby leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with the stable manifold of a saddle fixed point. Once the chaotic attractor is destroyed, a chaotic transient described by a power law with exponent −1 is observed.  相似文献   

17.
Chaos has been well understood in dynamic system, however, how the chaotic behavior occur in jerky flow in material, is still not clear, and is lack of specific chaotic attractor. Here the jerky evolution of lateral force and the stair-like fluctuation of lateral displacement are observed for Ni62 Nb38(at.%) metallic glass film during nanoscratch process. This jerky flow is investigated by using the largest Lyapunov exponent, Kolmogorov entropy and fractal dimension, and chaotic behavior of lateral force-time and normal displacement-lateral displacement sequences is verified. In addition to time series analysis, it is found that jerk equation can be used to describe the jerky flow of the metallic-glass film during nanoscratch. More importantly, unambiguous chaotic attractor is presented by jerky dynamics using "jerk"-singularities, namely the total change rate of lateral force relative to scratch time. These reveal an inner connection between jerky flow and jerky dynamics in nanoscratch of a metallic-glass film.  相似文献   

18.
Dynamics at infinity and a Hopf bifurcation for a Sprott E system with a very small perturbation constant are studied in this paper. By using Poincaré compactification of polynomial vector fields in \(R^3\), the dynamics near infinity of the singularities is obtained. Furthermore, in accordance with the centre manifold theorem, the subcritical Hopf bifurcation is analysed and obtained. Numerical simulations demonstrate the correctness of the dynamical and bifurcation analyses. Moreover, by choosing appropriate parameters, this perturbed system can exhibit chaotic, quasiperiodic and periodic dynamics, as well as some coexisting attractors, such as a chaotic attractor coexisting with a periodic attractor for \(a>0\), and a chaotic attractor coexisting with a quasiperiodic attractor for \(a=0\). Coexisting attractors are not associated with an unstable equilibrium and thus often go undiscovered because they may occur in a small region of parameter space, with a small basin of attraction in the space of initial conditions.  相似文献   

19.
We discuss strange nonchaotic attractors (SNAs) in addition to chaotic and regular attractors in a quasiperiodically driven system with time delays. A route and the associated mechanism are described for a special type of attractor called strange-nonchaotic-attractor-like (SNA-like) through T2 torus bifurcation. The type of attractor can be observed in large parameter domains and it is easily mistaken for a true SNA judging merely from the phase portrait, power spectrum and the largest Lyapunov exponent. SNA-like attractor is not strange and has no phase sensitivity. Conditions for Neimark-Sacker bifurcation are obtained by theoretical analysis for the unforced system. Complicated and interesting dynamical transitions are investigated among the different tongues.  相似文献   

20.
We study the influence of external noise on the relaxation to an invariant probability measure for two types of nonhyperbolic chaotic attractors, a spiral (or coherent) and a noncoherent one. We find that for the coherent attractor the rate of mixing changes under the influence of noise, although the largest Lyapunov exponent remains almost unchanged. A mechanism of the noise influence on mixing is presented which is associated with the dynamics of the instantaneous phase of chaotic trajectories. This also explains why the noncoherent regime is robust against the presence of external noise.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号