首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this paper, we solve the simultaneous Diophantine equations \(m \cdot ( x_{1}^k+ x_{2}^k +\cdots + x_{t_1}^k)=n \cdot (y_{1}^k+ y_{2}^k +\cdots + y_{t_2}^k )\), \(k=1,3\), where \( t_1, t_2\ge 3\), and m, n are fixed arbitrary and relatively prime positive integers. This is done by choosing two appropriate trivial parametric solutions and obtaining infinitely many nontrivial parametric solutions. Also we work out some examples, in particular the Diophantine systems of \(A^k+B^k+C^k=D^k+E^k\), \(k=1,3\).  相似文献   

2.
Suppose that k is a non-negative integer and a bipartite multigraph G is the union of
$$\begin{aligned} N=\left\lfloor \frac{k+2}{k+1}n\right\rfloor -(k+1) \end{aligned}$$
matchings \(M_1,\dots ,M_N\), each of size n. We show that G has a rainbow matching of size \(n-k\), i.e. a matching of size \(n-k\) with all edges coming from different \(M_i\)’s. Several choices of the parameter k relate to known results and conjectures.
  相似文献   

3.
Let \(a\ge 2\) be an integer and p prime number. It is well-known that the solutions of the Pell equation have recurrence relations. For the simultaneous Pell equations
$$\begin{aligned}&x^{2}-\left( a^{2}-1\right) y^{2} =1 \\&y^{2}-pz^{2} =1 \end{aligned}$$
assume that \(x=x_{m}\) and \(y=y_{m}\). In this paper, we show that if \(m\ge 3\) is an odd integer, then there is no positive solution to the system. Moreover, we find the solutions completely for \(5\le a\le 14\) in the cases when \(m\ge 2\) is even integer and \(m=1\).
  相似文献   

4.
Given integers \(k\ge 2\), \(n \ge 2\), \(m \ge 2\) and \( a_1,a_2,\ldots ,a_m \in {\mathbb {Z}}{\backslash }{\{0\}}\), and let \(f(z)= \sum _{j=0}^{n}c_jz^j\) be a polynomial of integer coefficients with \(c_n>0\) and \((\sum _{i=1}^ma_i)|f(z)\) for some integer z. For a k-coloring of \([N]=\{1,2,\ldots ,N\}\), we say that there is a monochromatic solution of the equation \(a_1x_1+a_2x_2+\cdots +a_mx_m=f(z)\) if there exist pairwise distinct \(x_1,x_2,\ldots ,x_m\in [N]\) all of the same color such that the equation holds for some \(z\in \mathbb {Z}\). Problems of this type are often referred to as Ramsey-type problems. In this paper, it is shown that if \(a_i>0\) for \(1\le i\le m\), then there exists an integer \(N_0=N(k,m,n)\) such that for \(N\ge N_0\), each k-coloring of [N] contains a monochromatic solution \(x_1,x_2,\ldots ,x_m\) of the equation \(a_1x_1+a_2x_2+ \cdots +a_mx_m= f(z)\). Moreover, if n is odd and there are \(a_i\) and \(a_j\) such that \(a_ia_j<0\) for some \(1 \le i\ne j\le m\), then the assertion holds similarly.  相似文献   

5.
Let \(f: \mathbb {C}^n \rightarrow \mathbb {C}^k\) be a holomorphic function and set \(Z = f^{-1}(0)\). Assume that Z is non-empty. We prove that for any \(r > 0\),
$$\begin{aligned} \gamma _n(Z + r) \ge \gamma _n(E + r), \end{aligned}$$
where \(Z + r\) is the Euclidean r-neighborhood of Z; \(\gamma _n\) is the standard Gaussian measure in \(\mathbb {C}^n\), and \(E \subseteq \mathbb {C}^n\) is an \((n-k)\)-dimensional, affine, complex subspace whose distance from the origin is the same as the distance of Z from the origin.
  相似文献   

6.
We prove that for each prime p, positive integer \(\alpha \), and non-negative integers \(\beta \) and \(\gamma \), the Diophantine equation \(X^{2N} + 2^{2\alpha }5^{2\beta }{p}^{2\gamma } = Z^5\) has no solution with N, X, \(Z\in \mathbb {Z}^+\), \(N > 1\), and \(\gcd (X,Z) = 1\).  相似文献   

7.
Let\(B_{2}^{n}\) denote the Euclidean ball in\({\mathbb R}^n\), and, given closed star-shaped body\(K \subset {\mathbb R}^{n}, M_{K}\) denote the average of the gauge of K on the Euclidean sphere. Let\(p \in (0,1)\) and let\(K \subset {\mathbb R}^{n}\) be a p-convex body. In [17] we proved that for every\(\lambda \in (0,1)\) there exists an orthogonal projection P of rank\((1 - \lambda)n\) such that
$\frac{f(\lambda)}{M_K} PB^{n}_{2} \subset PK,$
where\(f(\lambda)=c_p\lambda^{1+1/p}\) for some positive constant c p depending on p only. In this note we prove that\(f(\lambda)\) can be taken equal to\(C_p\lambda^{1/p-1/2}\). In terms of Kolmogorov numbers it means that for every\(k \leq n\)
$d_k (\hbox{Id}:\ell^{n}_{2} \to ({\mathbb R}^{n},\|\cdot\|_{K})) \leq C_p \frac{n^{1/p-1}}{k^{1/p-1/2}} \ell(\hbox{ID}: \ell^{n}_{2} \to ({\mathbb R}^{n}, \|\cdot\|_{K})),$
where\(\ell(\hbox{Id})={\bf E}\|\sum\limits^{n}_{i=1}g_i e_i\|_K\) for the independent standard Gaussian random variables\(\{g_i\}\) and the canonical basis\(\{e_i\}\) of\({\mathbb R}^n\). All results do not require the symmetry of K.
  相似文献   

8.
Let \(F(X,Y)=\sum \nolimits _{i=0}^sa_iX^{r_i}Y^{r-r_i}\in {\mathbb {Z}}[X,Y]\) be a form of degree \(r=r_s\ge 3\), irreducible over \({\mathbb {Q}}\) and having at most \(s+1\) non-zero coefficients. Mueller and Schmidt showed that the number of solutions of the Thue inequality
$$\begin{aligned} |F(X,Y)|\le h \end{aligned}$$
is \(\ll s^2h^{2/r}(1+\log h^{1/r})\). They conjectured that \(s^2\) may be replaced by s. Let
$$\begin{aligned} \Psi = \max _{0\le i\le s} \max \left( \sum _{w=0}^{i-1} \frac{1}{r_i-r_w},\sum _{w= i+1}^{s}\frac{1}{r_w-r_i}\right) . \end{aligned}$$
Then we show that \(s^2\) may be replaced by \(\max (s\log ^3s, se^{\Psi })\). We also show that if \(|a_0|=|a_s|\) and \(|a_i|\le |a_0|\) for \(1\le i\le s-1\), then \(s^2\) may be replaced by \(s\log ^{3/2}s\). In particular, this is true if \(a_i\in \{-1,1\}\).
  相似文献   

9.
Let \(\mathbb {F}_{p^m}\) be a finite field of cardinality \(p^m\), where p is a prime, and kN be any positive integers. We denote \(R_k=F_{p^m}[u]/\langle u^k\rangle =F_{p^m}+uF_{p^m}+\cdots +u^{k-1}F_{p^m}\) (\(u^k=0\)) and \(\lambda =a_0+a_1u+\cdots +a_{k-1}u^{k-1}\) where \(a_0, a_1,\ldots , a_{k-1}\in F_{p^m}\) satisfying \(a_0\ne 0\) and \(a_1=1\). Let r be a positive integer satisfying \(p^{r-1}+1\le k\le p^r\). First we define a Gray map from \(R_k\) to \(F_{p^m}^{p^r}\), then prove that the Gray image of any linear \(\lambda \)-constacyclic code over \(R_k\) of length N is a distance preserving linear \(a_0^{p^r}\)-constacyclic code over \(F_{p^m}\) of length \(p^rN\). Furthermore, the generator polynomials for each linear \(\lambda \)-constacyclic code over \(R_k\) of length N and its Gray image are given respectively. Finally, some optimal constacyclic codes over \(F_{3}\) and \(F_{5}\) are constructed.  相似文献   

10.
In this article we study the problem
$$\begin{aligned} \Delta ^{2}u-\left( a+b\int _{\mathbb {R}^{N}}\left| \nabla u\right| ^{2}dx\right) \Delta u+V(x)u=\left| u\right| ^{p-2}u\ \text { in }\mathbb {R}^{N}, \end{aligned}$$
where \(\Delta ^{2}:=\Delta (\Delta )\) is the biharmonic operator, \(a,b>0\) are constants, \(N\le 7,\) \(p\in (4,2_{*})\) for \(2_{*}\) defined below, and \(V(x)\in C(\mathbb {R}^{N},\mathbb {R})\). Under appropriate assumptions on V(x), the existence of least energy sign-changing solution is obtained by combining the variational methods and the Nehari method.
  相似文献   

11.
In this paper, we mainly study the theory of linear codes over the ring \(R =\mathbb {Z}_4+u\mathbb {Z}_4+v\mathbb {Z}_4+uv\mathbb {Z}_4\). By using the Chinese Remainder Theorem, we prove that R is isomorphic to a direct sum of four rings. We define a Gray map \(\Phi \) from \(R^{n}\) to \(\mathbb {Z}_4^{4n}\), which is a distance preserving map. The Gray image of a cyclic code over R is a linear code over \(\mathbb {Z}_4\). We also discuss some properties of MDS codes over R. Furthermore, we study the MacWilliams identities of linear codes over R and give the generator polynomials of cyclic codes over R.  相似文献   

12.
Let \(a_{\ell ,m}(n)\) denote the number of \((\ell ,m)\)-regular partitions of a positive integer n into distinct parts, where \(\ell \) and m are relatively primes. In this paper, we establish several infinite families of congruences modulo 2 for \(a_{3,5}(n)\). For example,
$$\begin{aligned} a_{3, 5}\left(2^{6\alpha +4}5^{2\beta }n+\frac{ 2^{6\alpha +3}5^{2\beta +1}-1}{3}\right) \equiv 0 , \end{aligned}$$
where \(\alpha , \beta \ge 0\).
  相似文献   

13.
Let \(\displaystyle \{p_n\}_{n=0}^{\infty }\), where \(p_n\) is a polynomial of degree n, be a sequence of polynomials orthogonal with respect to a positive probability measure. If \(x_{1,n} < \cdots < x_{n,n}\) denotes the zeros of \(p_n\) while \(x_{1,n-1} < \cdots < x_{n-1,n-1}\) are the zeros of \(p_{n-1}\), the inequality
$$\begin{aligned} x_{1,n} < x_{1,n-1} < x_{2,n} < \cdots < x_{n-1,n}< x_{n-1,n-1}< x_{n,n}, \end{aligned}$$
known as the interlacing property, is satisfied. We use a consequence of a generalised version of Markov’s monotonicity results to investigate interlacing properties of zeros of contiguous basic hypergeometric polynomials associated with little q-Jacobi polynomials and determine inequalities for extreme zeros of the above two polynomials. It is observed that the new bounds which are obtained in this paper give more precise upper bounds for the smallest zero of little q-Jacobi polynomials, improving previously known results by Driver and Jordaan (Math Model Nat Phenom 8(1):48–59, 2013), and in some cases, those by Gupta and Muldoon (J Inequal Pure Appl Math 8(1):7, 2007). Numerical examples are given in order to illustrate the accuracy of our bounds.
  相似文献   

14.
Let \(\mathbb F_{q}\) be a finite field with \(q=p^{m}\) elements, where p is an odd prime and m is a positive integer. In this paper, let \(D=\{(x_{1},x_{2},\ldots ,x_{n})\in \mathbb F_{q}^{n}\backslash \{(0,0,\ldots )\}: Tr(x_{1}^{p^{k_{1}}+1}+x_{2}^{p^{k_{2}}+1}+\cdots +x_{n}^{p^{k_{n}}+1})=c\}\), where \(c\in \mathbb F_p\), Tr is the trace function from \(\mathbb F_{q}\) to \(\mathbb F_{p}\) and each \(m/(m,k_{i})\) ( \(1\le i\le n\) ) is odd. we define a p-ary linear code \(C_{D}=\{c(a_{1},a_{2},\ldots ,a_{n}):(a_{1},a_{2},\ldots ,a_{n})\in \mathbb F_{q}^{n}\}\), where \(c(a_{1},a_{2},\ldots ,a_{n})=(Tr(a_{1}x_{1}+a_{2}x_{2}+\cdots +a_{n}x_{n}))_{(x_{1},x_{2},\ldots ,x_{n})\in D}\). We present the weight distributions of the classes of linear codes which have at most three weights.  相似文献   

15.
Let \(x \in \mathbb {R}^{d}\), d ≥ 3, and \(f: \mathbb {R}^{d} \rightarrow \mathbb {R}\) be a twice differentiable function with all second partial derivatives being continuous. For 1 ≤ i, jd, let \(a_{ij} : \mathbb {R}^{d} \rightarrow \mathbb {R}\) be a differentiable function with all partial derivatives being continuous and bounded. We shall consider the Schrödinger operator associated to
$$\mathcal{L}f(x) = \frac12 \sum\limits_{i=1}^{d} \sum\limits_{j=1}^{d} \frac{\partial}{\partial x_{i}} \left( a_{ij}(\cdot) \frac{\partial f}{\partial x_{j}}\right)(x) + {\int}_{\mathbb{R}^{d}\setminus{\{0\}}} [f(y) - f(x) ]J(x,y)dy $$
where \(J: \mathbb {R}^{d} \times \mathbb {R}^{d} \rightarrow \mathbb {R}\) is a symmetric measurable function. Let \(q: \mathbb {R}^{d} \rightarrow \mathbb {R}.\) We specify assumptions on a, q, and J so that non-negative bounded solutions to
$$\mathcal{L}f + qf = 0 $$
satisfy a Harnack inequality. As tools we also prove a Carleson estimate, a uniform Boundary Harnack Principle and a 3G inequality for solutions to \(\mathcal {L}f = 0.\)
  相似文献   

16.
We study the asymptotic Dirichlet problem for the minimal graph equation on a Cartan–Hadamard manifold M whose radial sectional curvatures outside a compact set satisfy an upper bound
$$\begin{aligned} K(P)\le - \frac{\phi (\phi -1)}{r(x)^2} \end{aligned}$$
and a pointwise pinching condition
$$\begin{aligned} |K(P) |\le C_K|K(P') | \end{aligned}$$
for some constants \(\phi >1\) and \(C_K\ge 1\), where P and \(P'\) are any 2-dimensional subspaces of \(T_xM\) containing the (radial) vector \(\nabla r(x)\) and \(r(x)=d(o,x)\) is the distance to a fixed point \(o\in M\). We solve the asymptotic Dirichlet problem with any continuous boundary data for dimensions \(n=\dim M>4/\phi +1\).
  相似文献   

17.
We consider series of the form
$$\begin{aligned} \frac{p}{q} +\sum _{j=2}^\infty \frac{1}{x_j}, \end{aligned}$$
where \(x_1=q\) and the integer sequence \((x_n)\) satisfies a certain non-autonomous recurrence of second order, which entails that \(x_n|x_{n+1}\) for \(n\ge 1\). It is shown that the terms of the sequence, and multiples of the ratios of successive terms, appear interlaced in the continued fraction expansion of the sum of the series, which is a transcendental number.
  相似文献   

18.
In this paper, we investigate the following critical fractional Schrödinger equation
$$\begin{aligned} (-\Delta )^su+V(x)u=|u|^{2_s^*-2}u+\lambda K(x)f(u), \ x \in \mathbb {R}^N, \end{aligned}$$
where \(\lambda >0\), \(0<s<1\), \((-\Delta )^s\) denotes the fractional Laplacian of order s, \(V, \ K\) are nonnegative continuous functions satisfying some conditions and f is a continuous function, \(N>2s\) and \(2_s^*=\frac{2N}{N-2s}\). We prove that the equation has a positive solution for large \(\lambda \) by the variational method.
  相似文献   

19.
Let \(\mathbb {B}_J({\mathcal {H}})\) denote the set of self-adjoint operators acting on a Hilbert space \(\mathcal {H}\) with spectra contained in an open interval J. A map \(\Phi :\mathbb {B}_J({\mathcal {H}})\rightarrow {{\mathbb {B}}}({\mathcal {H}})_\text {sa} \) is said to be of Jensen-type if
$$\begin{aligned} \Phi (C^*AC+D^*BD)\le C^*\Phi (A)C+D^*\Phi (B)D \end{aligned}$$
for all \( A, B \in \mathbb {B}_J({\mathcal {H}})\) and bounded linear operators CD acting on \( \mathcal {H} \) with \( C^*C+D^*D=I\), where I denotes the identity operator. We show that a Jensen-type map on an infinite dimensional Hilbert space is of the form \(\Phi (A)=f(A)\) for some operator convex function f defined in J.
  相似文献   

20.
We consider the model space \(\mathbb {M}^{n}_{K}\) of constant curvature K and dimension \(n\ge 1\) (Euclidean space for \(K=0\), sphere for \(K>0\) and hyperbolic space for \(K<0\)), and we show that given a function \(\rho :[0,\infty )\rightarrow [0, \infty )\) with \(\rho (0)=\mathrm {dist}(x,y)\) there exists a coadapted coupling (X(t), Y(t)) of Brownian motions on \(\mathbb {M}^{n}_{K}\) starting at (xy) such that \(\rho (t)=\mathrm {dist}(X(t),Y(t))\) for every \(t\ge 0\) if and only if \(\rho \) is continuous and satisfies for almost every \(t\ge 0\) the differential inequality
$$\begin{aligned} -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) \le \rho '(t)\le -(n-1)\sqrt{K}\tan \left( \tfrac{\sqrt{K}\rho (t)}{2}\right) +\tfrac{2(n-1)\sqrt{K}}{\sin (\sqrt{K}\rho (t))}. \end{aligned}$$
In other words, we characterize all coadapted couplings of Brownian motions on the model space \(\mathbb {M}^{n}_{K}\) for which the distance between the processes is deterministic. In addition, the construction of the coupling is explicit for every choice of \(\rho \) satisfying the above hypotheses.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号