首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 531 毫秒
1.
Multi-walled carbon nanotubes (MWCNTs) were used in the adsorptive removal of aniline, an organic pollutant, from an aqueous solution. It was found that carbon nanotubes with a higher specific surface area adsorbed and removed more aniline from an aqueous solution. The adsorption was dependent on factors, such as MWCNTs dosage, contact time, aniline concentration, solution pH and temperature. The adsorption study was analyzed kinetically, and the results revealed that the adsorption followed pseudo-second order kinetics with good correlation coefficients. In addition, it was found that the adsorption of aniline occurred in two consecutive steps, including the slow intra-particle diffusion of aniline molecules through the nanotubes. Various thermodynamic parameters, including the Gibbs free energy change (ΔG°), enthalpy change (ΔH°) and entropy change (ΔS°), were calculated. The results indicated that the spontaneity of the adsorption, exothermic nature of the adsorption and the decrease in the randomness reported as ΔG°, ΔH° and ΔS°, respectively, were all negative.  相似文献   

2.
The mechanistic aspects of improved aqueous removal of methyl orange (MO) dyes using high performance novel magnetic MgAlNi barium-ferrite (MgAlNi-BaFe) ternary double layer hydroxide (LDH) nanocomposites is reported in this study. Detailed surface characterization coupled with kinetic, equilibrium, thermodynamics and regeneration studies were undertaken under different operational conditions of temperature (298–318 K), initial concentration (20–100 mg/L), pH (2–6). The kinetic results show that MO sorption was mainly, associated with pseudo-second order and intra-particular diffusion process. The MO adsorption onto the MgAlNi-BaFe nanocomposites suggests a multi-layered sorption process that is endothermic and spontaneous in nature. The MO adsorption mechanism insight taken in cognizance of FTIR, XRD, pKa, zeta potential, the adsorbates surface functional groups and the adsorbate-adsorbent surface charges interactions suggest involvement of hydrogen bonding and n-π interactions, predominantly via physisorption process (ΔG° = −7.406 to −5.69 kJ/mol). The excellent adsorptive performance of the MgAlNi-BaFe adsorbents for removal of MO from water compared with other magnetic LDH nanocomposites was further elucidated via the MgAlNi-BaFe nanomaterials high rates of regeneration and superior performances for three successive desorption-adsorption cycles. This study demonstrates the high potentials of employing MgAlNi-BaFe nanomaterials for removal of dyes from water and wastewater.  相似文献   

3.
The present work investigates the preparation of promising biochar derived from date palm petioles powder (DPB) via a thermal treatment. DPB was characterized through various techniques to analyze the chemical (FTIR), morphological (SEM) and point of zero charges to investigate changes incorporated through the pyrolysis process.The adsorption of methyl orange (MO) onto the biochar was investigated using batch experiments according to different parameters which influence the adsorption process such as: initial dye concentration, equilibrium time, pH, and temperature. Isothermal and reuse studies of MO adsorption onto DPB were also investigated.Results of MO removal on DPB have demonstrated that the adsorption process was initial dye concentration-dependent, and equilibrium time was occurred in 60 min. The biochar presented high stability of MO adsorption capacity in a large domain of pH. Thermodynamic analysis of this process revealed that methyl orange adsorption was exothermic and spontaneous in nature.The experimental data were analyzed by pseudo-first-order, pseudo-second-order model, and the intraparticle-diffusion for kinetics and Langmuir, Freundlich, and Temkin models for isotherms.Kinetic adsorption followed the pseudo-second-order model and the intraparticle-diffusion within pores controlled the adsorption rate. The experimental data yielded good fits with in the following isotherms order: Langmuir > Temkin > Freundlich, The maximum adsorption capacity of MO on DPB was found 461 mg.g?1. The reusability study reveals the possibility of the reuse of DPB for three (03) cycles of adsorption–desorption, a slight decrease in the ability of methyl orange adsorption has noticed with the increase of the number of adsorption–desorption cycles : 81.03 %, 67.84 %, and 51.72 %, respectively. The found results of the present study show that the biochar derived from date palm petioles have the potential to be used as a promising adsorbent for the treatment of MO dye.  相似文献   

4.
Abstract

In this study the effect of the dose and particle size of the adsorbent, initial dye concentration, initial pH, contact time and temperature were investigated for the removal of by means of fly ash (FA) methylene blue (MB) from an aqueous solution. The FA dose was found to be 2.0?g and the under 270 mesh sized particles were found to be effective particles for adsorption. The adsorption process reached its maximum value at 0.5?mg/L dye concentration and attained equilibrium within 10?minutes. The adsorption isotherm was found to follow the Langmuir model. The estimated adsorption free energy (ΔGo), enthalpy change (ΔHo), and entropy change (ΔSo) for the adsorption process were ?37.77?kJ mol?1, ?13.44?kJ mol?1 and 122 J mol?1 K?1 respectively at 298 K. The maximum adsorption capacity is 0,12?mg g?1 at 298 K and 0,07?mg g?1 at 398 K. The adsorption process was exothermic, feasible and spontaneous. The positive value of ΔSo shows the affinity of FA for MB while the low value of ΔGo suggests a physical adsorption process.  相似文献   

5.
Batch adsorption experiments were carried out, aiming to remove lead ions from aqueous solutions and water samples using powdered marble wastes (PMW) as an effective inorganic sorbent, which is cheap, widespread, and may represent an environmental problem. The main parameters (i.e., solution pH, sorbent and lead concentration, shaking time, and temperature) influencing the sorption process, were investigated. The results obtained showed that the sorption of Pb2+ ions onto PMW was fitted well with the linear Freundlich and Langmuir models over the concentration range studied. From the Dubinin–Radushkevick (D–R) isotherm model it was found that the adsorption was chemical in nature. Thermodynamic parameters viz. the change in Gibbs free energy change (ΔG°), enthalpy (ΔH°) and entropy (ΔS°) were also calculated. These parameters indicated that the adsorption process of Pb2+ ions on PMW was spontaneous and endothermic in nature. Under the optimum experimental conditions employed, the removal of about 100% of Pb2+ ions was attained. The procedure was successfully applied to remove lead ions from aqueous and different natural water samples. Moreover, the adsorption mechanism is suggested.  相似文献   

6.
A Zn/Al hydrotalcite-like compound (HTlc) was prepared by co-precipitation (at constant pH) method and was characterized by XRD, TG/DTA, FTIR, and BET surface area. The ability of Zn/Al oxide to remove F- from aqueous solution was investigated. All the adsorption experiments were carried out as a function of time, pH, concentration of adsorbate, adsorbent dose, temperature etc. It was found that the maximum adsorption takes place within 4 h at pH 6.0. The percentage of adsorption increases with increase in the adsorbent dose, but decreases with increase in the adsorbate concentration. From the temperature variation it was found that the percentage of adsorption decreases with increase in temperature, which shows that the adsorption process is exothermic in nature. The adsorption data fitted well into the linearly transformed Langmuir equation. Sulfate and phosphate were found to have profound effects on fluoride removal. Thermodynamic parameters such as DeltaG0, DeltaH0, and DeltaS0 were calculated. The negative value of DeltaH0 indicates that the adsorption process is exothermic. The apparent equilibrium constants (Ka) are also calculated and found to decrease with increase in temperature. With 0.01 M NaOH the adsorbed F- could be completely desorbed from Zn/Al oxide in 6 h.  相似文献   

7.
In this research, a novel adsorbent gold nanoparticle loaded on activated carbon (Au-NP-AC) was synthesized by a low cost in a routine protocol. Subsequently, this novel material characterization and identification are followed by different techniques such as th eBruner–Emmet–Teller (BET) theory, scanning electron microcopy, and transmission electron microscopy analysis. Unique properties such as high BET surface area (>1229.55 m2/g) and low pore size (<22.46 Å) and average particle size lower than 48.798 Å in addition to high reactive atom and presence of various functional groups make it possible for efficient removal of sunset yellow (SY) and methyl orange (MO). Generally, the influence of variables including amount of adsorbent, initial dyes concentration, contact time, temperature on dyes removal percentage has great effect on removal percentage that their influence was optimized. The kinetic of proposed adsorption processes efficiently followed, pseudo-second-order and intra-particle diffusion approach. The equilibrium data of the removal strongly follow the Langmuir monolayer adsorption with high adsorption capacity in a short amount of time. This novel adsorbent by small amount (0.01 g) really is applicable for removal of high amount of both dyes (MO and SY) in short time (<18 minutes). Equilibrium data fitted well with the Langmuir model at all amount of adsorbent, while maximum adsorption capacity for MO 161.29 mg g?1 and for SY 227.27 for 0.005 g of Au-NP-AC.  相似文献   

8.
A green and environment-friendly magnetically separable nanocomposite, glutathione@magnetite was fabricated sonochemically through the functionalization of Fe3O4 by glutathione which was well characterized using Fourier-transform infrared spectroscopy, ultravoilet-visible spectroscopy, scanning electron microscope, energy-dispersive X-ray spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, thermogravimetric analysis, vibrating sample magnetometer, Brunauer-Emmett-Teller, and high-resolution transmission electron microscope. The parameters affecting adsorption including pH, temperature, contact time, initial adsorbate concentration, and adsorbent amount were optimized by batch experiments. The magnetic glutathione@magnetite was applied for the removal of uranium(VI) in water with maximum adsorption capacity found to be 333.33 mg/g in 120 min at a neutral pH at 25 °C showing high efficiency for U(VI) ions. Furthermore, adsorption results obtained from UV-vis spectroscopy were validated by inductively coupled plasma optical emission spectroscopy. The thermodynamic parameters, viz Gibbs free energy (ΔGº), standard enthalpy change (ΔHº), and standard entropy change (ΔSº) of the process were calculated using the Langmuir constants. The pseudo-second-order kinetics model is seen to be applicable for describing the uptake process using a kinetics test. Moreover, desorption studies reveals that glutathione@magnetite can be used repeatedly, and removal efficiency shows only a small decrease after six cycles. Thus, glutathione@magnetite acts as a potential adsorbent for the removal of U(VI) from the water with great adsorption performance.  相似文献   

9.
Organic dyes, especially the harmful cationic dye methyl orange (MO), are emerging pollutants. The development of new materials for their efficient adsorption and removal is thus of great significance. Porous organic polymers (POPs) such as hyper-cross-linked polymers, covalent organic frameworks, conjugated microporous polymers, and polymers with intrinsic microporosity are a new class of materials constructed from organic molecular building blocks. To design POPs both with good porosity and task-specific functionalization is still a critical challenge. In this study, we have demonstrated a simple one-step method for the synthesis of the hyper-cross-linked aromatic triazine porous polymer (HAPP) via the Friedel-Crafts reaction. The resultant porous polymer was characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, elemental analysis (EA), thermo-gravimetric analysis (TGA), solid-state 13C nuclear magnetic resonance (13C NMR), and nitrogen adsorption-desorption isotherms. The results show that HAPP is a rough, irregular morphology, porous organic polymer that is amorphous in nature. The novel polymer showed high Brunauer-Emmett-Teller surface area (of up to 104.36 m2∙g−1), porosity, and physicochemical stability. Owing to the presence of N heteroatom pore surfaces in the network, the material exhibited a maximum adsorption capacity of 249.3 mg∙g−1 for MO from aqueous solutions at room temperature. This is higher than that of some reported porous materials under the same conditions. To explain this phenomenon more clearly, theoretical quantum calculations were performed via the DFT method using Gaussian 09 software and Multiwfn version 3.4.1. It is performed to analyze the properties and electrostatic potential (ESP) of the HAPP monomer and MO. The results indicated that the N heteroatom of HAPP can easily develop strong interactions with MO, supporting the efficient adsorption of MO. The parameters studied include the physical and chemical properties of adsorption, pH, contact time, and initial concentrations. The percentage of MO removal increased as the pH was increased from 2 to 4. The optimum pH required for maximum adsorption was found to be 5.6. Adsorption kinetics data were modeled using the pseudo-first-order and pseudo-second-order models. The results indicate that the second-order model best describes the kinetic adsorption data. The adsorption isotherms revealed a good fit with the Langmuir model. More importantly, the HAPP can be regenerated effectively and recycled at least five times without significant loss of adsorption capacity. Therefore, it is believed that HAPPs with hierarchical porous structures, high surface areas, and physicochemical stability are promising candidates for the purification and treatment of dyes in solution.  相似文献   

10.
Cellulose nanocrystals (CNCs) prepared from cellulose fibre via sulfuric acid hydrolysis was used as an adsorbent for the removal of methylene blue (MB) from aqueous solution. The effects of pH, adsorbent dosage, temperature, ionic strength, initial dye concentration were studied to optimize the conditions for the maximum adsorption of dye. Adsorption equilibrium data was fitted to both Langmuir and Freundlich isotherm models, where the Langmuir model better described the adsorption process. The maximum adsorption capacity was 118 mg dye/g CNC at 25 °C and pH 9. Calculated thermodynamic parameters, such as free energy change (ΔG = ?20.8 kJ/mol), enthalpy change (ΔH = ?3.45 kJ/mol), and entropy change (ΔS = 0.58 kJ/mol K) indicates that MB adsorption on CNCs is a spontaneous exothermic process. Tunability of the adsorption capacity by surface modification of CNCs was shown by oxidizing the primary hydroxyl groups on the CNC surface with TEMPO reagent and the adsorption capacity was increased from 118 to 769 mg dye/g CNC.  相似文献   

11.
For the adsorption of Paraquat dichloride (1,1′-dimethyl-4,4′-bipyridyl dichloride) from synthetic aqueous solutions, batch experiments were carried out to study the kinetics of Paraquat dichloride onto calcium oxide activated date (Phoenix dactylifera) stone carbon powder (particle size dia. about 0.85 mm). Studies were conducted at various initial concentrations of 75 mg/L, 100 mg/L, and 125 mg/L of Paraquat dichloride with 8.0 g/L of adsorbent dose. The equilibrium time was found to be 140 minutes. Maximum removal was observed at pH 9.0. The regression analysis for the experimental data showed that the removal kinetic profiles followed a pseudo-second order kinetic models for all initial concentrations, pH, temperature, and salinity of sorbate. The experimental data were analyzed using Langmuir, Freundlich, and Dubinin-Radushkevich (D-R) isotherm models. Thermodynamic parameters, such as standard change in Gibbs free energy, standard change in enthalpy, and standard change in entropy, were evaluated, indicating that the overall adsorption process was exothermic and spontaneous in nature.  相似文献   

12.
The biomass pummelo peel was chosen as a biosorbent for removal of uranium(VI) from aqueous solution. The feasibility of adsorption of U(VI) by Pummelo peel was studied with batch adsorption experiments. The effects of contact time, biosorbent dosage and pH on adsorption capacity were investigated in detail. The pummelo peel exhibited the highest U(VI) sorption capacity 270.71?mg/g at an initial pH of 5.5, concentration of 50???g/mL, temperature 303?K and contacting time 7?h. The adsorption process of U(VI) was found to follow the pseudo-second-order kinetic equation. The adsorption isotherm study indicated that it followed both the Langmuir adsorption isotherm and the Freundlich adsorption isotherm. The thermodynamic parameters values calculated clearly indicated that the adsorption process was feasible, spontaneous and endothermic in nature. These properties show that the pummelo peel has potential application in the removal of the uranium(VI) from the radioactive waste water.  相似文献   

13.
In this work, application of polyaniline coated onto wood sawdust (PAni/SD) for the removal of methyl orange (MO) as a typical azo dye from aqueous solutions is introduced. The effects of some important parameters such as pH, initial concentration, sorbent dosage, and contact time on the uptake of MO solution were also investigated. In order to get a better comparison, adsorption experiments were also carried out using commercial grade of granulated activated carbon (GAC) and sawdust without coating (SD) at the same time. It was found that PAni/SD can be used to remove azo dyes such as MO from aqueous solutions very efficiently. Experimental data were analyzed by the Langmuir and Freundlich models of adsorption. Kinetic parameters for the adsorption of MO dyes for the selected adsorbents are also reported. In order to study the possibility of desorption for frequent application, chemical regeneration of the used adsorbents was also investigated. Desorption or recovery of dye and regeneration of adsorbent (PAni/SD) was found to be quite possible and of high performance. Application of modified sawdust with polyaniline for the removal of azo dye is very promising for textile wastewater treatment.  相似文献   

14.
Batch adsorption experiments were conducted to investigate the removal of fluoride from aqueous solution by the addition of synthetic hydroxyapatites (HAps) with different particle sizes. Results showed that size-dependent defluoridation properties of HAps. Better performances were obtained with smaller particle sized HAps, which presented higher adsorption efficiency. Bulk HAp, the HAp sample with the largest particle size, presented the lowest percentage of fluoride removal. The isotherm studies showed that the Freundlich model was the best choice to describe the adsorption behaviors of nanosized HAps. However, the adsorption pattern of the bulk sample followed both Langmuir and Freundlich isotherms. All parameters that might influence the defluoridation process were assessed, which included the effect of adsorbent dose, initial fluoride concentration, contact time and the effect of temperature. The removal efficiency of fluoride increased with increasing adsorbent dose. Decrease of the initial fluoride concentration resulted in the increase of fluoride removal efficiency. The percentage of fluoride removal increased as the ambient pH decreased. Thermodynamic parameters suggested that the adsorption of fluoride onto HAp samples was physisorption and endothermic in nature. Moreover, adsorption kinetic study revealed that the adsorption process followed pseudo-second-order kinetics. This work indicated that synthetic hydroxyapatites, especially the smaller particle sized HAps, were efficient defluoridation materials.  相似文献   

15.
大孔氯甲基化聚苯乙烯小球先后与乙二胺、2-氯乙酸反应得EDTA型螯合树脂(PS-EDTA),再用磷酸在室温处理得PS-EDTA/P树脂。PS-EDTA/P树脂被用于水相中Cu2+、Zn2+和Cd2+的吸附净化处理,探讨了溶液的pH值、初始金属离子浓度、时间、温度等因素对吸附性能的影响,并研究了其对重金属离子的吸附动力学和热力学。结果表明,PS-EDTA/P树脂对Cu2+和Zn2+的吸附符合Langmuir等温式、对Cd2+的吸附符合Freundlich等温式,准二级吸附动力学方程能够很好地描述3种金属离子在树脂上的吸附动力学行为。同时,PS-EDTA/P树脂对重金属吸附的热力学参数表明,PS-EDTA/P树脂对Cu2+、Zn2+和Cd2+的吸附是一个自发的、吸热的过程。已吸附Cu2+、Zn2+和Cd2+的树脂可以用0.1mol/L HCl解吸,解吸后的树脂对Cu2+、Zn2+和Cd2+仍具有较高的吸附量。  相似文献   

16.
The biosorption of nickel(II) ions from aqueous solution by Acacia leucocephala bark was studied in a batch adsorption system as a function of pH, initial metal ion concentration, adsorbent dosage, contact time and temperature. The maximum Ni(II) adsorption was obtained at pH 5. Further, the biosorbents were characterized by Fourier Transformer Infrared Spectroscopy (FTIR). The experimental data were analysed using three sorption kinetic models viz., the pseudo-first- and second-order equations and the intraparticle diffusion model. Results show that the pseudo-second-order equation provides the best correlation for the biosorption process. The equilibrium nature of Ni(II) adsorption at different temperatures of 30, 40 and 50 °C have been described by the Langmuir and Freundlich isotherm models. The equilibrium data fit well Langmuir isotherm. The monolayer adsorption capacity of A. leucocephala bark as obtained from Langmuir isotherm at 30 °C was found to be 294.1 mg/g. The Chi-square (χ2) and Sum of the square errors (SSE) tests were also carried out to find the best fit adsorption isotherm and kinetic model. Isotherms have been used to determine thermodynamic parameters of the process, viz., free energy change (ΔG°), enthalpy change (ΔH°), and entropy change (ΔS°) were calculated indicating that this system was a spontaneous and endothermic process. Present investigation emphasized that A. leucocephala bark may be utilized as a low cost adsorbent for nickel removal.  相似文献   

17.
In this research, the herbaceous peat collected from Gavurgolu peatlands, one of the biggest Turkish peatlands, was utilized as an adsorbent for the removal of copper (II) ions from aqueous solution. Adsorption experiments were conducted under various conditions, i.e., initial concentration, temperature, and pH. While the amount of Cu (II) adsorbed on the peat increased with increasing concentration of Cu (II) ions, it was not markedly affected by temperature and pH. Percentage removal was higher at lower concentration. For example, the maximum percentage removal of Cu (II) ions for initial concentration of 3 x 10(-4) M was 97.04% at 21 degrees C and pH 5.5. The adsorption capacity (Q(0)) of the peat was 4.84 mgg(-1) from Langmuir adsorption isotherm for the concentration range of 3 x 10(-4)-6 x 10(-4) M at 21 degrees C and pH 5.5. The equilibrium time of adsorption of Cu (II) ions was 150 min and independent of concentration and temperature. The amount of Cu (II) adsorbed at equilibrium time did not considerably change with temperature and pH. It was also determined that adsorption isotherm followed both Freundlich and Langmuir. Uptake mechanism of Cu (II) ions by the peat occurs via cation exchange (especially by means of Ca(2+) and Mg(2+)) as well as copper/peat complexation. Adsorption kinetic was consistent with the pseudo-second-order model.  相似文献   

18.
The removal of cationic dyes, methylene blue(MB) and rhodamine B(RB), and anionic dyes, methyl or-ange(MO) and eosin Y(EY), from aqueous solutions by adsorption using Cu2Se nanoparticles(Cu2SeNPs) was studied. The effects of the initial pH values, adsorbent doses, contact time, initial dye concentrations, salt concentrations, and operation temperatures on the adsorption capacities were investigated. The adsorption process was better fitted the Langmuir equation and pseudo-second-order kinetic model, and was spontaneous and endothermic as well. The adsorption mechanism was probably based on the electrostatic interactions and π-π interactions between Cu2SeNPs and dyes. For an adsorbent of 0.4 g/L of Cu2SeNPs, the adsorption capacities of 23.1(MB), 22.9(RB) and 23.9(EY) mg/g were achieved, respectively, with an initial dye concentration of 10 mg/g(pH=8 for MB and pH=4 for RB and EY) and a contact time of 120 min. The removal rate of MB was still 70.4% for Cu2SeNPs being reused in the 5th cycle. Furthermore, the recycled Cu2SeNPs produced from selenium nanoparticles adsorbing copper were also an effective adsorbent for the removal of dyes. Cu2SeNPs showed great potential as a new adsorbent for dyes removal due to its good stability, functionalization and reusability.  相似文献   

19.
Adsorption of a weak acid dye, methyl orange (MO) by calcined layered double hydroxides (LDO) with Zn/Al molar ratio of 3:1 was investigated. In the light of so called "memory effect," LDO was found to recover their original layered structure in the presence of appropriate anions, after adsorption part of MO(-) and CO(2-)(3) (come from air) intercalated into the interlayer of LDH which had been supported by XRD and ICP. The results of adsorption experiments indicate that the maximum capacity of MO at equilibrium (Q(e)) and percentage of adsorption (eta%) with a fixed adsorbent dose of 0.5 g L(-1) were found to be 181.9 mg g(-1) and 90.95%, respectively, when MO concentration, temperature, pH and equilibrium time were 100 mg L(-1), 298 K, 6.0 and 120 min, respectively. The isotherms showed that the adsorption of MO by Zn/Al-LDO was both consistent with Langmuir and Freundlich equations. The adsorption process was spontaneous and endothermic in nature and followed pseudo-second-order kinetic model. The calculated value of E(a) was found to be 77.1 kJ mol(-1), which suggests that the process of adsorption of methyl orange is controlled by the rate of reaction rather than diffusion. The possible mechanism for MO adsorption has also been presumed. In addition, the competitive anions on adsorption and the regeneration of Zn/Al-LDO have also been investigated.  相似文献   

20.
The efficacy of onion skins, both unmodified and chemically modified with thioglycolic acid, was investigated as alternative low-cost adsorbents for the sequestration of aqueous lead(II) ions from aqueous solution. The adsorbents were characterised using Fourier transform infrared spectroscopy and scanning electron microscopy – energy dispersive X-ray spectroscopy. Adsorption experiments were performed using batch sorption processes. The effects of contact time, pH, initial Pb(II) concentration, adsorbent dose, and temperature were investigated. Optimum sorption conditions were found at pH 4 and a 150?min equilibrium time for the modified onion skin and unmodified onion skin. The Langmuir, Freundlich, Dubinin-Radushkevich and Temkin models were used to characterize the equilibrium experimental results. The equilibrium process was best described by the Freundlich isotherm. The maximum adsorption capacities of 4.878 and 6.173?mg/g were obtained for modified and unmodified adsorbents, respectively, using the Langmuir model. Kinetic studies indicated that the sorption of Pb(II) ions followed a pseudo-second-order model. Thermodynamic parameters such as standard enthalpy change (ΔH°), entropy change (ΔS°), and free energy change (ΔG°) were evaluated from the sorption experimental measurements. The results showed that the sorption process of Pb(II) ions on unmodified and modified onion skins was feasible and exothermic under the conditions used in this study. The sorption process followed the mechanism of physisorption.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号