首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
A transition‐metal‐free C(sp2)?C(sp2) bond formation reaction by the cross‐coupling of diazo quinones with catechol boronic esters was developed. With this protocol, a variety of biaryls and alkenyl phenols were obtained in good to high yields under mild conditions. The reaction tolerates various functionalities and is applicable to the derivatization of pharmaceuticals and natural products. The synthetic utility of the method was demonstrated by the short synthesis of multi‐substituted triphenylenes and three bioactive natural products, honokiol, moracin M, and stemofuran A. Mechanistic studies and density functional theory (DFT) calculations revealed that the reaction involves attack of the boronic ester by a singlet quinone carbene followed by a 1,2‐rearrangement through a stepwise mechanism.  相似文献   

2.
Based on the different reactivity of selanyl and bromo groups,(E)-α-bromovinylselenides can undergo sequential cross coupling reactions with nucleophiles in the presence of transition metal complexes to form two carbon-carbon bonds in the same olefinic carbon leading to trisubstituted alkenes stereoselectively in good yields.  相似文献   

3.
A Pd‐catalyzed direct cross‐coupling of two distinct aryl bromides mediated by tBuLi is described. The use of [Pd‐PEPPSI‐IPr] or [Pd‐PEPPSI‐IPent] as catalyst allows for the efficient one‐pot synthesis of unsymmetrical biaryls at room temperature. The key for this selective cross‐coupling is the use of an ortho‐substituted bromide that undergoes lithium–halogen exchange preferentially.  相似文献   

4.
Unlike other variants of transition‐metal‐catalyzed cross‐coupling reactions, those based on organosilicon donors have not been used extensively in natural product synthesis. However, recent advances such as: 1) the development of mild reaction conditions, 2) the expansion of substrate scope, 3) the development of methods to stereoselectively and efficiently introduce the silicon‐containing moiety, 4) the development of a large number of sequential processes, and 5) the advent of bifunctional bis(silyl) linchpin reagents, signify the coming of age of silicon‐based cross‐coupling reactions. The following case studies illustrate how silicon‐based cross‐coupling reactions play a strategic role in constructing carbon–carbon bonds in selected target molecules.  相似文献   

5.
This work reports a modular and rapid approach to the stereoselective synthesis of a variety of α‐ and β‐(1→2)‐linked C‐disaccharides. The key step is a Ni‐catalyzed cross‐coupling reaction of D ‐glucal pinacol boronate with alkyl halide glycoside easily prepared from commercially available D ‐glucal. The products of this sp2–sp3 cross‐coupling reaction can be converted to glucopyranosyl, mannopyranosyl, or 2‐deoxy‐glucopyranosyl C‐mannopyranosides by one‐ or two‐step stereoselective oxidative–reductive transformations. To the best of our knowledge, we demonstrated the first synthetic application of a challenging sp2–sp3 Suzuki‐Miyaura cross‐coupling reaction in carbohydrate chemistry.  相似文献   

6.
A sulfoxide‐directed, metal‐free ortho‐propargylation of aromatics and heteroaromatics exploits intermolecular delivery of a propargyl nucleophile to sulfur followed by an intramolecular relay to carbon. The operationally simple cross‐coupling procedure is general, regiospecific with regard to the propargyl nucleophile, and shows complete selectivity for products of ortho‐propargylation over allenylation. The use of secondary propargyl silanes allows metal‐free ortho‐coupling to form carbon–carbon bonds between aromatic and heteroaromatic rings and secondary propargylic centres. The ‘safety‐catch’ nature of the sulfoxide directing group is illustrated in a selective, iterative double cross‐coupling process. The products of propargylation are versatile intermediates and they have been readily converted into substituted benzothiophenes.  相似文献   

7.
The direct oxidative cross‐coupling of phenols is a very challenging transformation, as homo‐coupling is usually strongly preferred. Electrochemical methods circumvent the use of oxidizing reagents or metal catalysts and are therefore highly attractive. Employing electrolytes with a high capacity for hydrogen bonding, such as methanol with formic acid or 1,1,1,3,3,3‐hexafluoro‐2‐propanol, a direct electrolysis in an undivided cell provides mixed 2,2′‐biphenols with high selectivity. This mild method tolerates a variety of moieties, for example, tert‐butyl groups, which are not compatible with other strong electrophilic media but vital for later catalytic applications of the formed products.  相似文献   

8.
The Hiyama cross‐coupling reaction is a powerful method for carbon–carbon bond formation. To date, the substrate scope of this reaction has predominantly been limited to sp2–sp2 coupling reactions. Herein, the palladium‐catalysed Hiyama type cross‐coupling of vinyldisiloxanes with benzylic and allylic bromides, chlorides, tosylates and mesylates is reported. A wide variety of functional groups were tolerated, and the synthetic utility of the methodology was exemplified through the efficient total synthesis of the cytotoxic natural product bussealin A. In addition, the antiproliferative ability of bussealin A was evaluated in two cancer‐cell lines.  相似文献   

9.
A reduced form of polyaniline has been shown to induce direct arylation of an arenediazonium salt with an arene (Gomberg–Bachmann reaction) to give the cross‐coupling product in moderate to good yields under mild conditions. Various arenediazonium salts and arenes, including heteroarenes such as furans, thiophenes, and pyrroles, are employed for the reaction. The most favorable combination of substrates is an electron‐poor arenediazonium salt with an electron‐rich heteroarene. Investigation of the mechanism by reactions with radical scavengers and experiments on kinetic isotope effects indicated the occurrence of a radical chain reaction initiated by one‐electron reduction of an arenediazonium salt by the polyaniline. Only 1 mol % (based on aniline tetramer) of the polyaniline is required for the cross‐coupling reaction to occur. This reaction proceeds under metal‐free conditions and with no need for photonic activation.  相似文献   

10.
Recently, the development of more sustainable catalytic systems based on abundant first‐row metals, especially nickel, for cross‐coupling reactions has attracted significant interest. One of the key intermediates invoked in these reactions is a NiIII–alkyl species, but no such species that is part of a competent catalytic cycle has yet been isolated. Herein, we report a carbon–carbon cross‐coupling system based on a two‐coordinate NiII–bis(amido) complex in which a NiIII–alkyl species can be isolated and fully characterized. This study details compelling experimental evidence of the role played by this NiIII–alkyl species as well as those of other key NiI and NiII intermediates. The catalytic cycle described herein is also one of the first examples of a two‐coordinate complex that competently catalyzes an organic transformation, potentially leading to a new class of catalysts based on the unique ability of first‐row transition metals to accommodate two‐coordinate complexes.  相似文献   

11.
The combination of conventional transition‐metal‐catalyzed coupling (2 e? process) and photoredox catalysis (1 e? process) has emerged as a powerful approach to catalyze difficult cross‐coupling reactions under mild reaction conditions. Reported is a palladium carbodicarbene (CDC) complex that mediates both a Suzuki–Miyaura coupling and photoredox catalysis for C?N bond formation upon visible‐light irradiation. These two catalytic pathways can be combined to promote both conventional transition‐metal‐catalyzed coupling and photoredox catalysis to mediate C?H arylation under ambient conditions with a single catalyst in an efficient one‐pot process.  相似文献   

12.
We report a BF3‐mediated direct alkynylation of pyridines at C(2) by using a variety of alkynyllithium reagents (oxidative cross‐coupling). Moreover, we have developed a novel transition‐metal‐free cross‐coupling method between alkylmagnesium reagents and 4‐substituted pyridines, such as isonicotinonitrile and 4‐chloropyridine, by employing BF3?OEt2 as a promoter. The combination of these methods enabled us to efficiently prepare a range of di‐, tri‐, and tetrasubstituted pyridines.  相似文献   

13.
The selective radical/radical cross‐coupling of two different organic radicals is a great challenge due to the inherent activity of radicals. In this paper, a copper‐catalyzed radical/radical C? H/P? H cross‐coupling has been developed. It provides a radical/radical cross‐coupling in a selective manner. This work offers a simple way toward β‐ketophosphonates by oxidative coupling of aryl ketone o‐acetyloximes with phosphine oxides using CuCl as catalyst and PCy3 as ligand in dioxane under N2 atmosphere at 130 °C for 5 h, and yields ranging from 47 % to 86 %. The preliminary mechanistic studies by electron paramagnetic resonance (EPR) showed that, 1) the reduction of ketone o‐acetyloximes generates iminium radicals, which could isomerize to α‐sp3‐carbon radical species; 2) phosphorus radicals were generated from the oxidation of phosphine oxides. Various aryl ketone o‐acetyloximes and phosphine oxides were suitable for this transformation.  相似文献   

14.
A nickel‐catalyzed arylation at the carbon center of o‐carborane cages has been developed, thus leading to the preparation of a series of 1‐aryl‐o‐carboranes and 1,2‐diaryl‐o‐carboranes in high yields upon isolation. This method represents the first example of transition metal catalyzed C,C′‐diarylation by cross‐coupling reactions of o‐carboranyl with aryl iodides.  相似文献   

15.
A selective dehydrogenative electrochemical functionalization of benzylic positions that employs 1,1,1,3,3,3‐hexafluoropropan‐2‐ol (HFIP) has been developed. The electrogenerated products are versatile intermediates for subsequent functionalizations as they act as masked benzylic cations that can be easily activated. Herein, we report a sustainable, scalable, and reagent‐ and metal‐free dehydrogenative formal benzyl–aryl cross‐coupling. Liberation of the benzylic cation was accomplished through the use of acid. Valuable diarylmethanes are accessible in the presence of aromatic nucleophiles. The direct application of electricity enables a safe and environmentally benign chemical transformation as oxidizers are replaced by electrons. A broad variety of different substrates and nucleophiles can be employed.  相似文献   

16.
Ethylene, the simplest alkene, is the most abundantly synthesized organic molecule by volume. It is readily incorporated into transition‐metal‐catalyzed carbon–carbon bond‐forming reactions through migratory insertions into alkylmetal intermediates. Because of its D2h symmetry, only one insertion outcome is possible. This limits byproduct formation and greatly simplifies analysis. As described within this Minireview, many carbon–carbon bond‐forming reactions incorporate a molecule (or more) of ethylene at ambient pressure and temperature. In many cases, a useful substituted alkene is incorporated into the product.  相似文献   

17.
Transition‐metal‐catalyzed cross‐couplings between aromatic electrophiles and nucleophiles have revolutionized modern chemical syntheses. Nevertheless, transition‐metal‐free approaches are preferable, considering the various issues caused by metal catalysts. This Minireview summarizes the recent progress in the light‐enabled transition‐metal‐free formation of carbon–carbon and carbon–heteroatom bonds in aromatics, which opens a new avenue in aromatic reactions. From the mechanistic perspective, it classifies different reaction types of aryl electrophiles in an excited state with various nucleophiles. We believe this will provide more rationales for metal‐free aromatic substitutions and cross‐couplings with light, and guide the development of novel transformations of aromatic compounds facilitated by light.  相似文献   

18.
The Suzuki–Miyaura coupling is one of the few transition‐metal‐catalyzed C? C bond‐forming reactions that have been used in applications ranging from discovery chemistry to manufacturing processes. Although coupling proceeds through the generic three‐stage ‘oxidative addition, transmetalation, reductive elimination’ sequence, there are a number of features that differentiate the Suzuki–Miyaura process from other transition‐metal‐catalyzed cross‐couplings. Most of these features are centered around, or are a consequence of, activation of the boron reagent for transmetalation through one or both of two distinct pathways. This review focuses on the evidence that has been presented for this ‘fork in the trail′, and the potential to apply such mechanistic insight to the design of reaction conditions.  相似文献   

19.
Isocyanides are versatile building blocks, and have been extensively exploited in C? H functionalization reactions. However, transition‐metal‐catalyzed direct C? H functionalization reactions with isocyanides suffer from over‐insertion of isocyanides. Reported herein is a radical coupling/isomerization strategy for the cross‐coupling of isocyanides with active methylene compounds through silver‐catalysis. The method solves the over‐insertion issue and affords a variety of otherwise difficult to synthesize β‐aminoenones and tricarbonylmethanes under base‐ and ligand‐free conditions. This report presents a new fundamental C? C bond‐forming reaction of two basic chemicals.  相似文献   

20.
The development of ecofriendly methods for carbon–carbon (C?C) and carbon–heteroatom (C?Het) bond formation is of great significance in modern‐day research. Metal‐free cross‐dehydrogenative coupling (CDC) has emerged as an important tool for organic and medicinal chemists as a means to form C?C and C?Het bonds, as it is atom economical and more efficient and greener than transition‐metal catalyzed CDC reactions. Molecular iodine (I2) is recognized as an inexpensive, environmentally benign, and easy‐to‐handle catalyst or reagent to pursue CDCs under mild reaction conditions, with good regioselectivities and broad substrate compatibility. This review presents the recent developments of I2‐catalyzed C?C, C?N, C?O, and C?S/C?Se bond‐forming reactions for the synthesis of various important organic molecules by cross‐dehydrogenative coupling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号