首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cesium lead halide perovskite nanocrystals (NCs) CsPbX3 (X=Cl, Br, and I) have been prominent materials in the last few years due to their high photoluminescence quantum yield (PLQY) for light-emitting diodes and other significant applications in photovoltaics and optoelectronics. In colloidal CsPbX3 synthesis, the most commonly used ligands are oleic acid and oleylamine. The latter plays an important role in surface passivation but may also be responsible for poor colloidal stability as a result of facile proton exchange leading to the formation of labile oleylammonium halide, which pulls halide ions out of the NC surface. Herein, a facile, efficient, completely amine-free synthesis of cesium lead bromide perovskite nanocrystals using hydrobromic acid as halide source and tri-n-octylphosphane as ligand under open-atmospheric conditions is demonstrated. Hydrobromic acid serves as labile source of bromide ion, and thus this three-precursor approach (separate precursors for Cs, Pb, Br) gives more control than a conventional single-source precursor for Pb and Br (PbBr2). The use of HBr paved the way to eliminate oleylamine, and thus the formation of labile oleylammonium halide can be completely excluded. Various Cs:Pb:Br molar ratios were studied and optimum conditions for making very stable CsPbBr3 NCs with high PLQY were found. These completely amine-free CsPbBr3 perovskite NCs synthesized under bromine-rich conditions exhibit good stability and durability for more than three months in the form of colloidal solutions and films, respectively. Furthermore, stable tunable emission across a wide spectral range through anion exchange was demonstrated. More importantly, this work reports open-atmosphere-stable CsPbBr3 NCs films exhibiting strong PL, which can be further used for optoelectronic device applications.  相似文献   

2.
Inorganic cesium lead halide perovskite nanocrystals are candidates for lighting and display materials due to their outstanding optoelectronic properties. However, the dissolution issue of perovskite nanocrystals in polar solvents remains a challenge for practical applications. Herein, we present a newly designed one-step spin-coating strategy to prepare a novel multicolor-tunable CsPbX3 (X=Cl, Br, I) nanocrystal film, where the CsPbX3 precursor solution was formed by dissolving PbO, Cs2CO3, and CH3NH3X into the ionic liquid n-butylammonium butyrate. The as-designed CsPbX3 nanocrystal films show high color purity with a narrow emission width. Also, the blue CsPb(Cl/Br)3 film demonstrates an absolute photoluminescence quantum yields (PLQY) of 15.6 %, which is higher than 11.7 % of green CsPbBr3 and 8.3 % of red CsPb(Br/I)3 film. This study develops an effective approach to preparing CsPbX3 nanocrystal thin films, opening a new avenue to design perovskite nanocrystals-based devices for lighting and display applications.  相似文献   

3.
Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut. However, the toxicity of lead represents a potential obstacle to their utilization. Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties. Bismuth, with much lower toxicity than lead, is promising to constitute lead‐free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+. Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn‐based perovskite nanocrystals. Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange.  相似文献   

4.
Lead halide perovskite quantum dots (QDs) are promising candidates for future lighting applications, due to their high quantum yield, narrow full width at half maximum (FWHM), and wide color gamut. However, the toxicity of lead represents a potential obstacle to their utilization. Although tin(II) has been used to replace lead in films and QDs, the high intrinsic defect density and oxidation vulnerability typically leads to unsatisfactory material properties. Bismuth, with much lower toxicity than lead, is promising to constitute lead‐free perovskite materials because Bi3+ is isoelectronic to Pb2+ and more stable than Sn2+. Herein we report, for the first time, the synthesis and optical characterization of MA3Bi2Br9 perovskite QDs with photoluminescence quantum yield (PLQY) up to 12 %, which is much higher than Sn‐based perovskite nanocrystals. Furthermore, the photoluminescence (PL) peaks of MA3Bi2X9 QDs could be easily tuned from 360 to 540 nm through anion exchange.  相似文献   

5.
In the literature, lead halide perovskites are very notable for their degradation in the presence of polar solvents, such as water. In contrast, in this research, it is observed that adding a minor amount of water into the precursor solution can improve the stability and photoluminescence quantum yield of CsPbBr3 nanocrystals through a ligand-assisted reprecipitation (LARP) method. In this way, the shape and phase transformation from CsPbBr3 nanoplates to CsPbBr3/Cs4PbBr6 nanorods and Cs4PbBr6 nanowires can be controlled with increasing water content in the precursor solution. Upon adding water up to an ideal amount, CsPbBr3 maintains its phase and nanoplate morphology. The key role of water amount for tuning the crystallinity, stability, morphology, optical properties, and phase transformation of cesium lead halide perovskite nanocrystals will be beneficial in the future commercialization of optoelectronics.  相似文献   

6.
Cesium lead halide (CsPbX3: X = I, Br, Cl) nanocrystals (NCs) are believed to be potential candidates for bioimaging applications. However, their low structural stability against polar solvents remains as a major limitation. To improve the NCs stability and maintain high emission intensity, we synthesized silica coated Zn-doped core@shell perovskite NCs via modified ligand assisted reprecipitation (LARP) synthetic method under relatively high humid condition. We systemically varied the composition inside the perovskite structure and then studied their photophysical properties and stability. Interestingly, the Zn-doping amount controls the ratio of CsPbBr3 to Cs4PbBr6 perovskites inside the core and also facilitates the growth of (OA)2PbBr4 shell, enables overall increase in NCs emission intensity and stability. We observed green color emission from these NCs in the spectral range of 494-506 nm with a maximum photoluminescence quantum yield (PLQY) up to 88%. The optimized Zn-doped NCs exhibited nearly four times better water stability compared to the bare NCs and retain emission properties for several months even in highly polar solvents. Finally, we performed biocompatibility test of the NCs generated on biological samples and hydroponics test in a gardenia leaf for their potential bioimaging applications.  相似文献   

7.
Despite the great success in the increase in the power conversion efficiency of lead halide perovskite solar cells, the toxicity of lead and the unstable nature of the materials are still major concerns for their wider implementation at the industrial level. Herein, large-size single crystals (SCs) are developed in HI solution by using a temperature lowering method and nanocrystals (NCs) of A3Bi2I9 perovskites [where A=CH3NH3+ (MA)+, Cs+, and (Rb0.05Cs2.95)+] are formed in ethanol (EtOH) and toluene (TOL). The stability of A3Bi2I9 perovskite is investigated by immersing the SCs for 24 h and pellets for 12 h in water. Moreover, the A3Bi2I9 perovskite NCs displays a promising photoluminescence quantum yield of 17.63 % and a long lifetime of 8.20 ns.  相似文献   

8.
ABX3-type halide perovskite nanocrystals (NCs) have been a hot topic recently due to their fascinating optoelectronic properties. It has been demonstrated that A-site ions have an impact on their photophysical and chemical properties, such as the optical band gap and chemical stability. The pursuit of halide perovskite materials with diverse A-site species would deepen the understanding of the structure–property relationship of the perovskite family. In this work we have attempted to synthesize rubidium-based perovskite NCs. We have discovered that the partial substitution of Rb+ by Cs+ help to stabilize the orthorhombic RbPbBr3 NCs at low temperature, which otherwise can only be obtained at high temperature. The inclusion of Cs+ into the RbPbBr3 lattice results in highly photoluminescent Rb1−xCsxPbBr3 NCs. With increasing amounts of Cs+, the band gaps of the Rb1−xCsxPbBr3 NCs decrease, leading to a redshift of the photoluminescence peak. Also, the Rb1−xCsxPbBr3 NCs (x=0.4) show good stability under ambient conditions. This work demonstrates the high structural flexibility and tunability of halide perovskite materials through an A-site cation substitution strategy and sheds light on the optimization of perovskite materials for application in high-performance optoelectronic devices.  相似文献   

9.
Lead halide perovskites nanocrystals have emerged as a leading candidate in perovskite solar cells and light-emitting diodes. Given their favorable, tunable optoelectronic properties through modifying the size of nanocrystals, it is imperative to understand and control the growth of lead halide perovskite nanocrystals. However, during the nanocrystal growth into bulk films, the effect of halide bonding on growth kinetics remains elusive. To understand how a chemical bonding of Pb−X (covalency and ionicity) impact on growth of nanocrystals, we have examined two different halide perovskite nanocrystals of CsPbCl3 (more ionic) and CsPbI3 (more covalent) derived from the same parent CsPbBr3 nanocrystals. Tracking the growth of nanocrystals by monitoring the spectral features of bulk peaks (at 445 nm for Cl and at 650 nm for I) enables us to determine the growth activation energy to be 92 kJ/mol (for CsPbCl3) versus 71 kJ/mol (for CsPbI3). The electronegativity of halides in Pb−X bonds governs the bond strength (150–240 kJ/mol), characteristics of bonding (ionic versus covalent), and growth kinetics and resulting activation energies. A fundamental understanding of Pb−X bonding provides a significant insight into controlling the size of the perovskite nanocrystals with more desired optoelectronic properties.  相似文献   

10.
We describe the simple, scalable, single‐step, and polar‐solvent‐free synthesis of high‐quality colloidal CsPbX3 (X=Cl, Br, and I) perovskite nanocrystals (NCs) with tunable halide ion composition and thickness by direct ultrasonication of the corresponding precursor solutions in the presence of organic capping molecules. High angle annular dark field scanning transmission electron microscopy (HAADF‐STEM) revealed the cubic crystal structure and surface termination of the NCs with atomic resolution. The NCs exhibit high photoluminescence quantum yields, narrow emission line widths, and considerable air stability. Furthermore, we investigated the quantum size effects in CsPbBr3 and CsPbI3 nanoplatelets by tuning their thickness down to only three to six monolayers. The high quality of the prepared NCs (CsPbBr3) was confirmed by amplified spontaneous emission with low thresholds. The versatility of this synthesis approach was demonstrated by synthesizing different perovskite NCs.  相似文献   

11.
A top‐down method is demonstrated for the fabrication of CH3NH3PbBr3 and CH3NH3PbI3 perovskite nanocrystals, employing a mixture of ligands oleic acid and oleylamine as coordinating solvents. This approach avoids the use of any polar solvents, skips multiple reaction steps by employing a simple ultrasonic treatment of the perovskite precursors, and yields rather monodisperse blue‐, green‐, and red‐emitting methylammonium lead halide nanocrystals with a high photoluminescence quantum yield (up to 72 % for the green‐emitting nanocrystals) and remarkably improved stability. After discussing all relevant reaction parameters, the green‐emitting CH3NH3PbBr3 nanocrystals are employed as a component of down‐conversion white‐light‐emitting devices.  相似文献   

12.
Traditional hot injection methods for the preparation of cesium lead halide perovskite nanocrystals (CsPbX3 PNCs, where X=Cl, Br, or I) rely on small molecule surfactants to produce PNCs with cube, plate, or rod-like morphologies. Here, we describe a new method whereby zwitterionic block copolymers are employed as macromolecular ligands in PNC synthesis, affording PNCs with excellent colloidal stability, high photoluminescence quantum yield, and in some cases distinctly non-cubic shapes. The block copolymers used in this study – composed of a poly(n-butyl methacrylate) hydrophobic block and zwitterionic methacrylate hydrophilic blocks – dissolve in useful solvents for PNC growth despite containing large mole percentages of zwitterionic groups. PNCs prepared with block copolymer ligands were found to disperse and retain their fluorescence in a range of polar organic solvents and were amenable to direct integration into optically transparent nanocomposite thin films with high PNC content.  相似文献   

13.
Lead halide perovskites possess unique characteristics that are well-suited for optoelectronic and energy capture devices, however, concerns about their long-term stability remain. Limited stability is often linked to the methylammonium cation, and all-inorganic CsPbX3 (X=Cl, Br, I) perovskite nanocrystals have been reported with improved stability. In this work, the photostability and thermal stability properties of CsPbX3 (X=Cl, Br, I) nanocrystals were investigated by means of electron microscopy, X-ray diffraction, thermogravimetric analysis coupled with FTIR (TGA-FTIR), ensemble and single particle spectral characterization. CsPbBr3 was found to be stable under 1-sun illumination for 16 h in ambient conditions, although single crystal luminescence analysis after illumination using a solar simulator indicates that the luminescence states are changing over time. CsPbBr3 was also stable to heating to 250 °C. Large CsPbI3 crystals (34±5 nm) were shown to be the least stable composition under the same conditions as both XRD reflections and Raman bands diminish under irradiation; and with heating the γ (black) phase reverts to the non-luminescent δ phase. Smaller CsPbI3 nanocrystals (14±2 nm) purified by a different washing strategy exhibited improved photostability with no evidence of crystal growth but were still thermally unstable. Both CsPbCl3 and CsPbBr3 show crystal growth under irradiation or heat, likely with a preferential orientation based on XRD patterns. TGA-FTIR revealed nanocrystal mass loss was only from liberation and subsequent degradation of surface ligands. Encapsulation or other protective strategies should be employed for long-term stability of these materials under conditions of high irradiance or temperature.  相似文献   

14.
Methylammonium lead iodide bromides MAPb(BrxI1-x)3 are a class of mixed halide lead perovskites, materials that offer high-power conversion efficiencies and bandgap tunability. For these reasons, they are a promising absorber material for future solar cells, although their use is still limited due to several factors. The reversible phase segregation under even low light intensities is one of them, lowering the effective bandgap due to local segregation into iodide-rich and bromide-rich phases. While several studies have been done to illuminate the mechanism and suppression of phase segregation, challenges remain to understand its kinetics. We obtained dynamic ellipsometric measurements from x=0.5 mixed halide lead perovskite thin films protected by a polystyrene layer under green laser light with a power density of ∼11 W/cm2. Time constants between 1.7(±0.7)×10−3 s−1 for the segregation and 1.5(±0.6)×10−4 s−1 for recovery were calculated. The phase segregation rate constants are surprisingly two orders of magnitude slower than and the recovery rate is consistent with those measured using photoluminescence methods under similar conditions. These results confirm a concern in the literature about the complexity in the phase separation kinetics measured from photoluminescence. We expect ellipsometry to serve as a complementary technique to other spectroscopies in studying mixed-halide lead perovskites phase segregation in the future.  相似文献   

15.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

16.
Two‐dimensional (2D) organic–inorganic hybrid perovskite nanosheets (NSs) are attracting increasing research interest due to their unique properties and promising applications. Here, for the first time, we report the facile synthesis of single‐ and few‐layer free‐standing phenylethylammonium lead halide perovskite NSs, that is, (PEA)2PbX4 (PEA=C8H9NH3, X=Cl, Br, I). Importantly, their lateral size can be tuned by changing solvents. Moreover, these ultrathin 2D perovskite NSs exhibit highly efficient and tunable photoluminescence, as well as superior stability. Our study provides a simple and general method for the controlled synthesis of 2D perovskite NSs, which may offer a new avenue for their fundamental studies and optoelectronic applications.  相似文献   

17.
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.  相似文献   

18.
Lead‐based perovskite nanocrystals (NCs) have outstanding optical properties and cheap synthesis conferring them a tremendous potential in the field of optoelectronic devices. However, two critical problems are still unresolved and hindering their commercial applications: one is the fact of being lead‐based and the other is the poor stability. Lead‐free all‐inorganic perovskite Cs3Bi2X9 (X=Cl, Br, I) NCs are synthesized with emission wavelength ranging from 400 to 560 nm synthesized by a facile room temperature reaction. The ligand‐free Cs3Bi2Br9 NCs exhibit blue emission with photoluminescence quantum efficiency (PLQE) about 0.2 %. The PLQE can be increased to 4.5 % when extra surfactant (oleic acid) is added during the synthesis processes. This improvement stems from passivation of the fast trapping process (2–20 ps). Notably, the trap states can also be passivated under humid conditions, and the NCs exhibited high stability towards air exposure exceeding 30 days.  相似文献   

19.
Lead‐free perovskite nanocrystals (NCs) were obtained mainly by substituting a Pb2+ cation with a divalent cation or substituting three Pb2+ cations with two trivalent cations. The substitution of two Pb2+ cations with one monovalent Ag+ and one trivalent Bi3+ cations was used to synthesize Cs2AgBiX6 (X=Cl, Br, I) double perovskite NCs. Using femtosecond transient absorption spectroscopy, the charge carrier relaxation mechanism was elucidated in the double perovskite NCs. The Cs2AgBiBr6 NCs exhibit ultrafast hot‐carrier cooling (<1 ps), which competes with the carrier trapping processes (mainly originate from the surface defects). Notably, the photoluminescence can be increased by 100 times with surfactant (oleic acid) added to passivate the defects in Cs2AgBiCl6 NCs. These results suggest that the double perovskite NCs could be potential materials for optoelectronic applications by better controlling the surface defects.  相似文献   

20.
Lead‐free halide perovskite nanocrystals (NCs) have drawn wide attention for solving the problem of lead perovskites toxicity and instability. Herein, we synthesize the direct band gap double perovskites undoped and Ag‐doped Cs2NaInCl6 NCs by variable temperature hot injection. The Cs2NaInCl6 NCs have little photoluminescence because of dark self‐trapped excitons (STEs). The dark STEs can be converted into bright STEs by doping with Ag+ to produce a bright yellow emission, with the highest photoluminescence quantum efficiency of 31.1 %. The dark STEs has been directly detected experimentally by ultrafast transient absorption (TA) techniques. The dynamics mechanism is further studied. In addition, the Ag‐doped NCs show better stability than the undoped ones. This result provides a new way to enhance the optical properties of lead‐free perovskites NCs for high‐performance light emitters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号