首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 215 毫秒
1.
Mixed organolead halide perovskites (MOHPs), CH3NH3Pb(BrxI1?x)3, have been shown to undergo phase segregation into iodide‐rich domains under illumination, which presents a major challenge to their development for photovoltaic and light‐emitting devices. Recent work suggested that phase‐segregated domains are localized at crystal boundaries, driving investigations into the role of edge structure and the growth of larger crystals with reduced surface area. Herein, a method for growing large (30×30×1 μm3) monocrystalline MAPb(BrxI1?x)3 single crystals is presented. The direct visualization of the growth of nanocluster‐like I‐rich domains throughout the entire crystal revealed that grain boundaries are not required for this transformation. Narrowband fluorescence imaging and time‐resolved spectroscopy provided new insight into the nature of the phase‐segregated domains and the collective impact on the optoelectronic properties.  相似文献   

2.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

3.
We report a family of cationic lead halide layered materials, formulated as [Pb2X2]2+[O2C(CH)2CO2] (X=F, Cl, Br), exhibiting pronounced broadband white‐light emission in bulk form. These well‐defined PbX‐based structures achieve an external quantum efficiency as high as 11.8 %, which is comparable to the highest reported value (ca.9 %) for broadband phosphors based on layered organolead halide perovskites. More importantly, our cationic materials are ultrastable lead halide materials, which overcome the air/moisture‐sensitivity problems of lead perovskites. In contrast to the perovskites and other bulk emitters, the white‐light emission intensity of our materials remains undiminished after continuous UV irradiation for 30 days under atmospheric conditions (ca.60 % relative humidity). Our mechanistic studies confirm that the broadband emission is ascribed to short‐range electron‐phonon coupling in the strongly deformable lattice and generated self‐trapped carriers.  相似文献   

4.
Although two-dimensional (2D) metal–halide double perovskites display versatile physical properties due to their huge structural compatibility, room-temperature ferroelectric behavior has not yet been reported for this fascinating family. Here, we designed a room-temperature ferroelectric material composed of 2D halide double perovskites, (chloropropylammonium)4AgBiBr8, using an organic asymmetric dipolar ligand. It exhibits concrete ferroelectricity, including a Curie temperature of 305 K and a notable spontaneous polarization of ≈3.2 μC cm−2, triggered by dynamic ordering of the organic cation and the tilting motion of heterometallic AgBr6/BiBr6 octahedra. Besides, the alternating array of inorganic perovskite sheets and organic cations endows large mobility-lifetime product (μτ=1.0×10−3 cm2 V−1) for detecting X-ray photons, which is almost tenfold higher than that of CH3NH3PbI3 wafers. As far as we know, this is the first study on an X-ray-sensitive ferroelectric material composed of 2D halide double perovskites. Our findings afford a promising platform for exploring new ferroelectric materials toward further device applications.  相似文献   

5.
Two-dimensional (2D) AA′n−1MnX3n+1 type halide perovskites incorporating straight-chain symmetric diammonium cations define a new type of structure, but their optoelectronic properties are largely unexplored. Reported here is the synthesis of a centimeter-sized AA′n−1MnX3n+1 type perovskite, BDAPbI4 (BDA=NH3C4H8NH3), single crystal and its charge-transport properties under X-ray excitation. The crystal shows a staggered configuration of the [PbI6]4− layers, a band gap of 2.37 eV, and a low trap density of 3.1×109 cm−3. The single-crystal X-ray detector exhibits an excellent sensitivity of 242 μC Gyair−1 cm−2 under the 10 V bias (0.31 V μm−1), a detection limit as low as 430 nGyair s−1, ultrastable response current, a stable baseline with the lowest dark current drift of 6.06×10−9 nA cm−1 s−1 V−1, and rapid response time of τrise=7.3 ms and τfall=22.5 ms. These crystals are promising candidates for the next generation of optoelectronic devices.  相似文献   

6.
The kinetics of the gas-phase reactions of OH radicals, NO3 radicals, and O3 with indan, indene, fluorene, and 9,10-dihydroanthracene have been studied at 297 ± 2 K and atmospheric pressure of air. The rate constants, or upper limits thereof, for the O3 reactions were (in cm3 molecule−1 s−1 units): indan, < 3 × 10−19; indene, (1.7 ± 0.5) × 10−16, fluorene, < 2 × 10−19; and 9,10-dihydroanthracene, (9.0 ± 2.0) × 10−19. Using a relative rate method, the rate constants for the OH radical and NO3 radical reactions, respectively, were (in cm3 molecule−1 s−1 units): indan, (1.9 ± 0.5) × 10−11 and (6.6 ± 2.0) × 10−15; indene, (7.8 ± 2.0) × 10−11 and (4.1 ± 1.5) × 10−12; fluorene, (1.6 ± 0.5) × 10−11 and (3.5 ± 1.2) × 10−14; and 9,10-dihydroanthracene, (2.3 ± 0.6) × 10−11 and (1.2 ± 0.4) × 10−12. These kinetic data were used to assess the relative contributions of the various reaction pathways. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 299–309, 1997.  相似文献   

7.
Halide double perovskites have recently emerged as a promising environmentally friendly optoelectronic and photovoltaic material for their inherent thermodynamic stability, high defect tolerance, and appropriate band gaps. However, to date, no ferroelectric material based on halide double perovskites has been discovered. Herein, by hetero‐substitution of lead and cation intercalation of n‐propylamine, the first halide double perovskite ferroelectric, (n‐propylammonium)2CsAgBiBr7 ( 1 ), is reported and it exhibits distinct ferroelectricity with a notable saturation polarization of about 1.5 μC cm?2. More importantly, single‐crystal photodetectors of 1 exhibit extraordinary performance with containing high on/off ratios of about 104, fast response rates of 141 μs, and detectivity as high as 5.3×1011 Jones. This finding opens a new way to design high‐performance perovskite ferroelectrics, and provides a viable approach in the search for stable and lead‐free optoelectronic materials as an alternative to the lead‐containing system.  相似文献   

8.
Rate constants for the reactions of OH, NO3, and O3 with pinonaldehyde and the structurally related compounds 3-methylbutanal, 3-methylbutan-2-one, cyclobutyl-methylketone, and 2,2,3-trimethyl-cyclobutyl-1-ethanone have been measured at 300±5 K using on-line Fourier transform infrared spectroscopy. The rate constants obtained for the reactions with pinonaldehyde were: kOH=(9.1±1.8)×10−11 cm3 molecule−1 s−1, kNO3=(5.4±1.8)×10−14 cm3 molecule−1 s−1, and kO3=(8.9±1.4)×10−20 cm3 molecule−1 s−1. The results obtained indicate a chemical lifetime of pinonaldehyde in the troposphere of about two hours under typical daytime conditions, [OH]=1.6×106 molecule cm−3. © 1997 John Wiley & Sons, Inc. Int J Chem Kinet 29: 527–533, 1997.  相似文献   

9.
The gas phase reaction of OH radicals with hydrogen iodide (HI) has been studied using a Laser Photolysis-Resonance Fluorescence (LP-RF) apparatus, recently developed in our group. The measured rate constant at 298 K was (2.7 ± 0.2) × 10−11 cm3 molecule−1 s−1. This rate constant is compared with the ones of the reactions OH + HCl and OH + HBr. The role of the reaction OH + HI in marine tropospheric chemistry is discussed. In addition, the LP-RF apparatus was tested and validated by measuring the following rate constants (in cm3 molecule−1 s−1 units): 𝓀(OH + HNO3) = (1.31 ± 0.06) × 10−13 at p = 27 and 50 Torr of argon and 𝓀(OH + C3H8) = (1.22 ± 0.08) × 10−12. These rate constants are in very good agreement with the literature data.  相似文献   

10.
The kinetics and mechanisms of the reactions of aluminium(III) with pentane-2,4-dione (Hpd), 1,1,1-trifluoro pentane-2,4-dione (Htfpd) and heptane-3,5-dione (Hhptd) have been investigated in aqueous solution at 25°C and ionic strength 0.5 mol dm−3 sodium perchlorate. The kinetic data are consistent with a mechanism in which aluminium(III) reacts with the β-diketones by two pathways, one of which is acid independent while the second exhibits a second-order inverse-acid dependence. The acid-independent pathway is ascribed to a mechanism in which [Al(H2O)6]3+ reacts with the enol tautomers of Hpd, Htfpd, and Hhptd with rate constants of 1.7(±1.3)×10−2, 0.79(±0.21), and 7.5(±1.6)×10−3 dm3 mol−1 s−1, respectively. The inverse acid pathway is consistent with a mechanism in which [Al(H2O)5(OH)]2+ reacts with the enolate ions of Hpd, Htfpd, and Hhptd with rate constants of 4.32(±0.18)×106, 5.84(±0.24)×103, and 1.67(±0.05)×107 dm3 mol−1 s−1, respectively. An alternative formulation involves a pathway in which [Al(H2O)4(OH)2]+ reacts with the protonated enol tautomers of the ligands. This gives rate constants of 2.79(±0.12)×104, 3.86(±0.16)×105, and 8.98(±0.25)×103 dm3 mol−1 s−1 for reaction with Hpd, Htfpd, and Hhptd, respectively. Consideration of the kinetic data reported here together with data from the literature, suggest that [Al(H2O)5(OH)]2+ reacts by an associative or associative-interchange mechanism. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 257–266, 1998.  相似文献   

11.
Using a relative rate method, rate constants have been measured for the gas-phase reactions of the OH radical with 1-hexanol, 1-methoxy-2-propanol, 2-butoxyethanol, 1,2-ethanediol, and 1,2-propanediol at 296±2 K, of (in units of 10−12 cm3 molecule−1 s−1): 15.8±3.5; 20.9±3.1; 29.4±4.3; 14.7±2.6; and 21.5±4.0, respectively, where the error limits include the estimated overall uncertainties in the rate constants for the reference compounds. These OH radical reaction rate constants are higher than certain of the literature values, by up to a factor of 2. Rate constants were also measured for the reactions of 1-methoxy-2-propanol and 2-butoxyethanol with NO3 radicals and O3, with respective NO3 radical and O3 reaction rate constants (in cm3 molecule−1 s−1 units) of: 1-methoxy-2-propanol, (1.7±0.7)×10−15, and <1.1×10−19; and 2-butoxyethanol, (3.0±1.2)×10−15, and <1.1×10−19. The dominant tropospheric loss process for the alcohols, glycols, and glycol ethers studied here is calculated to be by reaction with the OH radical, with lifetimes of 0.4–0.8 day for a 24 h average OH radical concentration of 1.0×106 molecule cm−3. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 533–540, 1998  相似文献   

12.
Cavity ring‐down UV absorption spectroscopy was used to study the kinetics of the recombination reaction of FCO radicals and the reactions with O2 and NO in 4.0–15.5 Torr total pressure of N2 diluent at 295 K. k(FCO + FCO) is (1.8 ± 0.3) × 10−11 cm3 molecule−1 s−1. The pressure dependence of the reactions with O2 and NO in air at 295 K is described using a broadening factor of Fc = 0.6 and the following low (k0) and high (k) pressure limit rate constants: k0(FCO + O2) = (8.6 ± 0.4) × 10−31 cm6 molecule−1 s−1, k(FCO + O2) = (1.2 ± 0.2) × 10−12 cm3 molecule−1 s−1, k0(FCO + NO) = (2.4 ± 0.2) × 10−30 cm6 molecule−1 s−1, and k (FCO + NO) = (1.0 ± 0.2) × 10−12 cm3 molecule−1 s−1. The uncertainties are two standard deviations. © 2001 John Wiley & Sons, Inc. Int J Chem Kinet 33: 130–135, 2001  相似文献   

13.
The mechanism and kinetics of energy transfer from the Xe(6s[3/2]1) resonance state to CO and CO2 molecules have been investigated by XeCl(B–X) (λmax=308 nm) fluorescence intensity measurements at stationary conditions in Xe–CCl4–M systems. Steady-state analysis of the fluorescence intensity dependence on the xenon and M pressure at constant CCl4 concentration shows that these processes occur in two- and three-body reactions: Xe(6s[3/2]10)+M→products; Xe(6s[3/2]10)+M+Xe→products. The two-body rate constants for above reactions have been found to be (0.7±0.2)×10−10 and (4.9±0.4)×10−10 cm3 s−1 for CO and CO2, respectively. The three-body rate constants have been found to be (3±1)×10−29 and (2.4±0.3)×10−28 cm6 s−1 for CO and CO2, respectively. It has been shown that the third order reaction is a very effective channel of xenon excited atoms decay at high xenon pressures (P(Xe)>50 Torr).  相似文献   

14.
Fourier transform infrared (FTIR) smog chamber techniques were used to investigate the atmospheric chemistry of the isotopologues of methane. Relative rate measurements were performed to determine the kinetics of the reaction of the isotopologues of methane with OH radicals in cm3 molecule−1 s−1 units: k(CH3D + OH) = (5.19 ± 0.90) × 10−15, k(CH2D2 + OH) = (4.11 ± 0.74) × 10−15, k(CHD3 + OH) = (2.14 ± 0.43) × 10−15, and k(CD4 + OH) = (1.17 ± 0.19) × 10−15 in 700 Torr of air diluent at 296 ± 2 K. Using the determined OH rate coefficients, the atmospheric lifetimes for CH4–xDx (x = 1–4) were estimated to be 6.1, 7.7, 14.8, and 27.0 years, respectively. The results are discussed in relation to previous measurements of these rate coefficients.  相似文献   

15.
In the stirred batch experiment, the Mn(II)-catalyzed bromate-saccharide reaction in aqueous H2SO4 or HClO4 solution exhibits damped oscillations in the concentrations of bromide and Mn(II) ions. Peculiar multiple oscillations are observed in the system with arabinose or ribose. The apparent second-order rate constants of the Mn(III)-saccharide reactions at 25°C are (0.659, 1.03, 1.76, 2.32, and 6.95) M−1 s−1 in 1.00 M H2SO4 and (4.69, 7.51, 10.2, 13.5, and 36.2) M−1 s−1 in (2.00–4.00) M HClO4 for (glucose, galactose, xylose, arabinose, and ribose), respectively. At 25°C, the observed pseudo-first-order rate constant of the Mn(III)-Br reaction is kobs = (0.2 ± 0.1) [Br] + (130 ± 5)[Br]2 + (2.6 ± 0.1) × 103[Br]3 + (1.2 ± 0.2) × 104[Br]4 s−1 and the rate constant of the Br2 Mn(II) reaction is less than 1 × 10−4 M−1 s−1. The second-order rate constants of the Br2-saccharide reactions are (3.65 ± 0.15, 11.0 ± 0.5, 4.05, 12.5 ± 0.7, and 2.62) × 10−4 M−1 s−1 at 25°C for glucose, galactose, xylose, arabinose, and ribose, respectively.  相似文献   

16.
The kinetics of the reactions O(3P) + CF2CCl2 and O(3P) + CF3CFCF2 were studied at room temperature in a discharge flow tube system. The overall rate constants based on the measured afterglow reactions were (3.10 ± 0.40) × 10−13 and (3.00 ± 0.60) × 10−14 cm3 molecule−1 s−1, respectively. The experiments were carried out under pseudo‐first‐order conditions with [O(3P)]0 ≪ [alkene]0. These results are compared with previous relative measurements using different experimental techniques. The effect of substituent atoms or groups on the overall rate constants is analyzed in comparison with other alkenes in the literature. © 1999 John Wiley & Sons, Inc. Int J Chem Kinet 31: 867–872, 1999  相似文献   

17.
环境友好型无铅卤化物钙钛矿太阳能电池研究进展   总被引:1,自引:1,他引:0  
ABX_3(A为甲胺、甲脒等有机离子或铯离子,B为铅或锡等金属离子,X为溴、碘等卤化物离子)卤化物钙钛矿材料具有优异的光电特性,是当前太阳能电池研究的前沿和热点之一。然而,这类太阳能电池普遍面临含毒性元素铅和稳定性差等问题,极大地阻碍了钙钛矿太阳能电池商业化应用进程。因此,发展新型高效无铅钙钛矿太阳能电池势在必行。本文评述了环境友好型无铅卤化物钙钛矿太阳能电池的最新研究动态和进展,探讨了该类太阳能电池的制备、性能及其稳定性等问题,展望了其未来发展趋势。  相似文献   

18.
Tin halide perovskites are potential alternatives of lead halide perovskites. However, the easy oxidation of Sn2+ to Sn4+ brings in a challenge. Recently, layered two-dimensional hybrid tin halide perovskites have been shown to partially resist the oxidation process because of the presence of hydrophobic organic molecules. Consequently, such layered hybrid perovskites are being explored for optoelectronic applications. The optical properties of layered tin halide perovskites depend on the interlayer separation and the dielectric mismatch between the organic and inorganic layers. Intercalation (insertion) of a molecular species between the layers modifies the interlayer interactions affecting the optical properties of layered hybrid perovskites. We investigated the effect of hexafluorobenzene (HFB) intercalation in phenethylammonium tin iodide [(PEA)2SnI4] using temperature-dependent (6 K to 300 K) photoluminescence (PL). HFB intercalation increases the bandgap. A strong PL quenching is observed in pristine (PEA)2SnI4 below 150 K, probably because of the presence of non-emissive states. HFB intercalation suppresses the influence of such non-emissive states resulting in an increase in PL intensity at the cryogenic temperatures. Our results highlight that a simple molecular intercalation (non-covalent interaction) into layered hybrid perovskites can significantly tailor the electronic and optical properties.  相似文献   

19.
A discharge flow reactor coupled to a laser-induced fluorescence (LIF) detector and a mass spectrometer was used to study the kinetics of the reactions CH3O+Br→products (1) and CH3O+BrO→products (2). From the kinetic analysis of CH3O by LIF in the presence of an excess of Br or BrO, the following rate constants were obtained at 298 K: k1=(7.0±0.4)×10−11 cm3 molecule−1 s−1 and k2=(3.8±0.4)×10−11 cm3 molecule−1 s−1. The data obtained are useful for the interpretation of other laboratory studies of the reactions of CH3O2 with Br and BrO. © 1998 John Wiley & Sons, Inc. Int J Chem Kinet 30: 249–255, 1998.  相似文献   

20.
Widespread use of pesticides has caused serious environmental concern. In order to evaluate the fate of organic pesticides in the atmosphere, rate constants for gas phase reactions of OH radicals with dichlorvos, carbaryl, chlordimeform, and 2,4‐D butyl ester were measured using the relative rate method at ambient temperature and 101 kPa total pressure. On‐line FTIR spectroscopy was used to monitor the concentrations of pesticides as a function of time. The reaction rate constants with OH radicals (in units of cm3 molecule−1 s−1) have been determined as (2.0 ± 0.4) × 10−11 for dichlorvos, (3.3 ± 0.5) × 10−11 for carbaryl, (3.0 ± 0.7) × 10−10 for chlordimeform, and (1.5 ± 0.2) × 10−11 for 2,4‐D butyl ester. These rate constants agree well with those estimated based on the structure–activity relationship. The group rate constant for NC group (k(NC)) was estimated as 2.7 × 10−10 cm3 molecule−1 s−1. Dimethyl phosphite has been tentatively identified as a product of the reaction of dichlorvos with OH radicals. Atmospheric lifetimes due to the reactions with OH radicals were also estimated (in units of h): 14 ± 3 for dichlorvos, 8 ± 1 for carbaryl, 1.0 ± 0.3 for chlordimeform, and 19 ± 3 for 2,4‐D butyl ester. These short atmospheric lifetimes indicate that the four organic pesticides degrade rapidly in the atmosphere, and they themselves are unlikely to cause persistent pollution. Further studies are needed to identify the potential hazard of their degradation products. © 2005 Wiley Periodicals, Inc. Int J Chem Kinet 37: 755–762, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号