首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 27 毫秒
1.
采用分子动力学模拟(MD)方法对甲醇和乙醇在超临界二氧化碳中的无限稀释扩散系数进行了模拟计算, 并应用泰勒分散理论, 采用超临界色谱仪对模拟结果进行了实验验证. 模拟计算值与实验值较吻合, 且变化规律基本一致, 表明采用这种新方法可以准确有效地预测超临界体系的扩散性质, 能够方便地应用于工程设计.  相似文献   

2.
Modeling of adsorption equilibrium for supercritical fluid mixtures, with as few parameters as possible, is important in applications of the technology of supercritical fluid adsorption. In this paper, a correlative model has been developed to represent the adsorption equilibria of solutes from the near-critical CO(2) fluid. A two-dimensional van der Waals equation of state and the three-dimensional P - R equation of state were used to describe the adsorbed and bulk phases, respectively. This model contains five parameters for adsorption equilibrium isotherms at finite concentrations and two parameters for adsorption equilibrium constants at infinite dilution. All the parameters are independent of temperature and pressure. By applying the model to the experimental data from the literature, it was shown that this model is capable of describing the adsorption behavior of solutes from supercritical carbon dioxide over relatively wide temperature and pressure ranges. In addition, the adsorption behavior of supercritical fluid mixtures was investigated at finite and infinite dilution conditions.  相似文献   

3.
采用球型模型和点位-点位模型对超临界二氧化碳的自扩散系数及苯或萘在超临界二氧化碳中的无限稀释扩散系数进行了分子动力学模拟。结果表明,球型模型及点位-点位模型均可较准确地预测二氧化碳的自扩散系数,球型模型因形式简单,准确度相对较差;点位-点位模型准确度虽高,但需较长的模拟机时。两种位能模型所获得的准确度相当,但点位-点位模型可以更精细地反映体系的微观结构。  相似文献   

4.
利用经改造的超临界流体色谱仪测定不同温度和压力下苯、丙酮在超临界二氧化碳中的无限稀释扩散系数,开发出一个针对本科高年级学生的开放性实验,旨在加深学生对超临界流体及其性质的理解。在熟悉超临界流体色谱仪的工作原理、结构及其应用并掌握其操作方法的基础上,拓展学生视野和思维的深度及广度,提升学生的实验操作技能,培养高素质化学人才。  相似文献   

5.
A diaphragm cell has been used to measure mutual diffusion coefficients at 25°C for four binary nonelectrolyte mixtures: ethylbenzene + n-hexane, carbon tetrachloride + ethylbenzene, cyclohexane + p-xylene, and 1,2-dichloroethane + cyclohexane. A free-volume predictive approach for binary mutual diffusion coefficients was developed and tested. Only infinite dilution diffusion coefficients, some readily available pure substance data, and UNIFAC group contribution parameters are used in the model. No binary equilibrium thermodynamic information is required. For 73 binary systems with an overall average absolute deviation of 5.2%, it has been shown that the developed method is better than two commonly available reference methods for the prediction of liquid diffusion coefficients.  相似文献   

6.
The binary diffusion of 1,2-diethylbenzene, 1,4-diethylbenzene, 5-tert-butyl-m-xylene and phenylacetylene at infinite dilution in supercritical carbon dioxide were measured between 15.0 and 35.0 MPa and in the temperature range of 313.16 to 333.16K by the Taylor-Aris chromatographic method. The effect of temperature, pressure, viscosity and density was discussed. In the case of temperature dependence, additional measurements were done for 5-tert-butyl-m-xylene from 308.16 to 398.16K at 35.0 MPa. The measured diffusivities of the four solutes were compared with the calculated ones by several predictive formulas.  相似文献   

7.
Supercritical carbon dioxide(SC-CO2 ) is considered in green chemistry as a substitute for conventional solvents in chemical reactions due to its environmentally benign character. Recently we have reported the homogeneous hydroformylation of propylene in supercritical carbon dioxide( SC-CO2 ) , which is an example of this kind of application of carbon dioxide. The determination for the critical parameters of carbon dioxide + butyraldehyde mixtures is necessary for this reaction design which is the focus of the present paper. The critical parameters of the binary systems were determined via the static visual method at a constant volume with the molar fraction of butyraldehyde ranging from 1.0% to 2. 2% and the pressure ranging from 5 to 10 MPa. The experimental results show that the critical pressure and temperature increased with increasing the molar fraction of butyraldehyde. The bubble(dew) temperatures and the bubble (dew) pressures for the binary systems were also determined experimentally. The p-T Figures at different compositions of the binary systems were described. In addition, the critical compressibility factors Zc of the binary systems at different concentrations of n-butyraldehyde were calculated. It was found that the critical compressibility factor values of the binary systems decreased with increasing the molar fraction of n-butyraldehyde in the experimental range.  相似文献   

8.
《Fluid Phase Equilibria》1999,166(1):101-110
An equation proposed by Darken, including the thermodynamic factor and tracer diffusion coefficients of solvent and solute, was adopted to correlate the diffusion coefficients for naphthalene and dimethylnaphthalene (DMN) isomers in supercritical carbon dioxide and the correlated results were compared with the experimental data. IML equation of state with mixing rules and combining rules containing two adjustable interaction parameters were used for calculation of the thermodynamic factor. By using the interaction parameters adjusted to the solubility data, the concentration dependence of diffusion coefficients and their anomaly near the critical point of carbon dioxide can be quantitatively represented. In order to improve the reliability of experimental results, some re-measured diffusion coefficient data for naphthalene, 2,6- and 2,7-DMN at 308.2 K, and new data for naphthalene at 318.2 K and for 2,3-DMN at 308.2 K are presented.  相似文献   

9.
Kurnik, R.T. and Reid, R.C., 1982. Solubility of solid mixtures in supercritical fluids. Fluid Phase Equilibria, 8: 93-105Supercritical fluids are receiving widespread attention as possible extraction agents for relatively non-volatile solids and liquids. Previous studies of the solubility of solids in supercritical fluids have been limited to pure solids. These pure-component data are interesting and indicate novel properties of supercritical fluids in this respect. The more general problem, however, lies in determining the solubility of multicomponent solids in supercritical fluids. Experimental data have now been obtained on the solubilities of binary, solid hydrocarbon mixtures in both supercritical carbon dioxide and supercritical ethylene. Most of the behavior exhibited by pure solids in supercritical fluids still exists for multicomponent solid solute systems (e.g., retrograde solidification, solubility extrema), but new phenomena were also found. The most interesting finding is that the solubility of a solid component when in a multicomponent solute system can be as much as 300% higher than the component solubility in a pure solid system at the same operating conditions. The multicomponent-solid-fluid data usually correlate well with thermodynamic theory.  相似文献   

10.
This paper reports measurements of the solubility of water in liquid and supercritical fluid mixtures of dimethyl ether and carbon dioxide. The measurements were made by extracting water under saturation conditions using premixed liquid dimethyl ether–carbon dioxide mixtures. Results are reported for temperatures of 313.8 K and 333.3 K at 9.0 MPa and 15.0 MPa. Results are fitted to the Peng–Robinson cubic equation of state with mixing rules according to Wong and Sandler, using binary interaction parameters fitted to the literature data for the respective binary systems: dimethyl ether–water; dimethyl ether–carbon dioxide; and carbon dioxide–water. Liquid densities for dimethyl ether–carbon dioxide mixtures, measured using a coriolis flow instrument, are also reported.  相似文献   

11.
The binary diffusion coefficients, D(12), and retention factors for myristoleic acid and its methyl ester at infinite dilution were measured by the chromatographic impulse response technique in supercritical carbon dioxide at temperatures of 313.2, 333.2 and 343.2 K and pressures from 9.2 to 30 MPa for the acid, and from 8.0 to 14 MPa for the ester. Although the D(12) values were represented by the two correlations, the D(12)/T vs. CO(2) viscosity and the Schmidt-number correlations, which are valid for more than 40 compounds that we have measured so far, significant temperature dependences were observed for the ester. Moreover, the D(12) values for the ester at 313.2 K downward deviated from the background values around 400 kg m(-3), where the partial molar volumes, obtained from the correlation between the retention factors measured and CO(2) densities, showed large negative values.  相似文献   

12.
The rapid determination of critical data of binary mixtures of carbon dioxide plus propane and carbon dioxide plus ethane has been carried out using the opalescence effect of pure substances or mixtures near their critical loci. The experiments have been performed applying a heatable stainless-steel vessel equipped with two sapphire windows for optical observation of changes of state. The initial two-phase mixture is continuously heated and pressurized. The vessel content increasingly becomes opalescent and the critical point is characterized by a total opacity. Beyond this point the fluid instantly becomes clear; the one-phase supercritical state is reached.  相似文献   

13.
CO2/离子液体体系热力学性质的分子动力学模拟   总被引:1,自引:0,他引:1  
超临界CO2和离子液体(ILs)是两种绿色溶剂. 离子液体可以溶解超临界CO2, 而超临界CO2不能溶解离子液体. 由此设计构成的CO2/IL二元系统, 同时具备了超临界CO2和离子液体的许多优点: 既可以降低离子液体的粘度, 还便于相分离, 是新型的耦合绿色溶剂. 其物理化学性质对于设计反应、分离等过程非常重要. 因此, 本文以CO2/IL二元系统为研究对象, 通过选择合适的分子力场和系综, 运用分子动力学(MD)模拟方法研究了CO2/[bmim][PF6]、CO2/[bmim][NO3]等体系的热力学性质. 结果表明, CO2对ILs膨胀度的影响非常小, 当CO2摩尔分数为0.5时, ILs膨胀仅为15%. CO2/ILs的扩散系数远小于CO2膨胀甲醇、乙醇溶液的扩散系数. 随着CO2含量的增加, ILs的扩散系数提高, 粘度显著下降, 表明CO2能有效地改善ILs扩散性, 减小其粘度. 因此CO2可用以改善离子液体溶剂体系的传递特性, 增强反应分离过程在其中的进行.  相似文献   

14.
Configurational-bias Monte Carlo simulations in the Gibbs and isobaric-isothermal ensembles using the transferable potentials for phase equilibria force field were carried out to investigate the thermophysical properties of mixtures containing supercritical carbon dioxide and methanol. The binary vapor-liquid coexistence curves were calculated at 333.15 and 353.15 K and are in excellent agreement with experimental measurements. The self-association of methanol in supercritical carbon dioxide was investigated over a range of temperatures and pressures near the mixture critical point. The temperature dependence of the equilibrium constants for the formation of hydrogen-bonded aggregates (from dimer to heptamer) allowed for the determination of the enthalpy of hydrogen bonding, DeltaHHB, in supercritical carbon dioxide with values for DeltaHHB of about 15 kJ mol(-1) falling within the range of previously proposed values. No strong pressure dependence was observed for the formation of aggregates. Apparently the decrease of the entropic penalty and of the enthalpic benefit upon increasing pressure or solvent density mostly cancel each other's effect on aggregate formation.  相似文献   

15.
《Fluid Phase Equilibria》1998,153(1):167-212
The methods for obtaining reliable data on diffusion coefficients at high pressure have received great attention over the last 15 years. This interest has been due to the importance that supercritical fluids have assumed in some industrial areas, mainly in emerging separative operations based on mass transfer mechanisms. This review includes all the available data of diffusion coefficients in supercritical fluids at infinite dilution. Revised literature includes references until 1998. Frequent types of graphical correlation were analyzed.  相似文献   

16.
A noise elimination technique was applied to the determination of binary diffusion coefficients D12 from the response curves having extremely low absorbance intensities in impulse response methods under supercritical conditions of carbon dioxide. The effectiveness of this technique was experimentally examined for the analyses of response curves through both the curve-fitting and the moment methods in two cases: the chromatographic impulse response method for phenol and β-carotene with a polymer-coated capillary column, and the Taylor dispersion method for acetone with an uncoated capillary column. Unreliable D12 values were obtained from the moment method of the response curves at lower absorbance intensities, even treated with noise elimination. The curve-fitting method with the noise elimination treatment was quite effective for determining the D12 values accurately, and was valid at the lowest absorbance intensities, on the order of 10−4 absorbance unit of UV-Vis multi-detector, corresponding to the smallest quantity of the solute, i.e. 6×10−5, 6×10−6, and 5×10−2 μ mol for phenol, β-carotene, and acetone, respectively, under conditions studied. Infinite dilution regions for binary diffusion coefficients were obtained by injecting various amounts: the binary diffusion coefficients showed constant values at concentrations less than 0.6, 0.004, and 0.08 mol m−3 for phenol, β-carotene, and acetone, respectively, in supercritical carbon dioxide at 313.2 K and 16–18 MPa.  相似文献   

17.
The rapid determination of critical data of binary mixtures of carbon dioxide plus propane and carbon dioxide plus ethane has been carried out using the opalescence effect of pure substances or mixtures near their critical loci. The experiments have been performed applying a heatable stainless-steel vessel equipped with two sapphire windows for optical observation of changes of state. The initial two-phase mixture is continuously heated and pressurized. The vessel content increasingly becomes opalescent and the critical point is characterized by a total opacity. Beyond this point the fluid instantly becomes clear; the one-phase supercritical state is reached. Received: 17 December / Revised: 24 February 1999 / Accepted: 26 February 1999  相似文献   

18.
Applications and prospects of two-phase, tuneable solvent systems composed of ionic liquids (ILs) and supercritical fluids with an emphasis on supercritical carbon dioxide (scCO(2)) are reviewed. The IL-scCO(2) biphasic systems have increasingly been used in diverse fields of chemistry and technology, and some examples of these applications are mentioned here. Rational design of such applications can obviously benefit from pertinent data on phase equilibria including the partition coefficients of the prospective products and reactants between the two phases. Therefore, a reliable technique to measure the limiting partition coefficients would be of value. Here, the pros and cons of supercritical fluid chromatography in this respect are discussed. An overview of methods for predictive thermodynamic modelling of binary (IL-scCO(2)) and ternary (solute-IL-scCO(2)) systems is also included.  相似文献   

19.
A modified Wilson model is tested for its ability to correlate and predict distribution coefficients in two representative systems: 1-butanol-water and cyclohexanewater. The model is fitted to ternary equilibrium data for various solutes in these systems using a procedure involving minimization of the least-squares distance between calculated and experimental logarithmic distribution ratios. In addition, benzene-water, hexane-water, and cyclohexane-water distribution coefficients for infinitely diluted liquid solutes are predicted using only binary system information. All computations involve using both van der Waals and molar volumes as structural parameters to account for the geometry of the molecules studied. Satisfactory representations of experimental distribution ratios and fairly accurate distribution coefficients at infinite dilution are obtained for both systems. However, in a number of cyclohexane-water systems, miscibilities of constituent binary mixtures are poorly predicted from ternary system information when van der Waals volumes are used. Replacement of van der Waals volumes by molar volumes has little influence on the fit, but significant improvement is observed for the prediction of both binary miscibility properties and for distribution coefficients at infinite dilution in all the solvent-water systems considered.Presentation to First International Symposium on Solubility Phenomena, University of Western Ontario, London, Ontario, August 21–23, 1984.  相似文献   

20.
Thermal diffusion coefficients in three ternary mixtures are measured in a thermogravitational column. One of the mixtures consists of one normal alkane and two aromatics (dodecane-isobutylbenzene-tetrahydronaphthalene), and the other two consist of two normal alkanes and one aromatic (octane-decane-1-methylnaphthalene). This is the first report of measured thermal diffusion coefficients (for all species) of a ternary nonelectrolyte mixture in literature. The results in ternary mixtures of octane-decane-1-methylnaphthalene show a sign change of the thermal diffusion coefficient for decane as the composition changes, despite the fact that the two normal alkanes are similar. In addition to thermal diffusion coefficients, molecular diffusion coefficients are also measured for three binaries and one of the ternary mixtures. The open-end capillary-tube method was used in the measurement of molecular diffusion coefficients. The molecular and thermal diffusion coefficients allow the estimation of thermal diffusion factors in binary and ternary mixtures. However, in the ternaries one also has to calculate phenomenological coefficients from the molecular diffusion coefficients. A comparison of the binary and ternary thermal diffusion factors for the mixtures comprised of octane-decane-1-methylnaphthalene reveals a remarkable difference in the thermal diffusion behavior in binary and ternary mixtures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号