首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
The optical spectrum of Mn2+ in octahedral coordination for sursassite is characterized by well resolved bands at 580, 515, 470, 390, 340, and 295 nm (17240, 19420, 21280, 25640, 29410 and 33900 cm-1). Crystal field parameters evaluated from the observed bands are Dq=690, B=680 and C=2800 cm-1. A broad band centred around 13000 cm-1 attributed to Fe(III) ion is an impurity in sursassite confirmed from EDX analysis. Vibrational spectra have been investigated both by IR and Raman spectroscopy. The correlation between vibrational modes and the structural properties of the manganese silicate, sursassite, is made and compared with other silicates. Two vibrational modes of CO(3)2- observed; the antisymmetric stretching mode (nu3) at 1420 cm-1 (IR active) and the out-of-plane bending mode (nu2) (IR and Raman active) at approximately 875 cm-1. This confirms the Mn rich phases in sursassite as observed from SEM probably an Mn carbonate-rhodochrosite.  相似文献   

2.
Electronic absorption and Soret-excited resonance Raman (RR) spectra are reported for bis-N-alkylimidazole and bis-pyridine complexes of various cross-trans-linked iron(II)-"basket-handle" porphyrins (Fe(II)-BHP) in methylene chloride. These compounds enable us to characterize the spectroscopic properties of ruffled six-coordinated low-spin Fe(II)-porphyrin complexes. The visible absorption spectra show that the Q and B bands are progressively red-shifted when the handles are shortened and/or when the steric hindrance of the axial ligands is increased. This effect is accompanied by both a decrease in RR frequency of the nu(2) mode and an increase in frequency of the nu(8) and nu(s)(Fe-ligand(2)) modes. More precisely, an inverse linear correlation is found between the frequencies of the nu(2) and nu(8) modes. For each ligation state, the positions of the absorption bands are also linearly correlated with the frequency of the nu(2) or nu(8) mode. All of these spectroscopic data reveal that the degree of ruffling of the Fe(II)-BHP complexes is increased by the N-methylimidazole --> pyridine axial substitutions, presumably because the mutual steric strains between the axial ligand rings, the porphyrin macrocycle and the porphyrin handles are increased. The present study provides a first basis for discerning ruffled conformations from planar and other nonplanar structures in ferrous heme proteins.  相似文献   

3.
Vibrational properties of the five-coordinate porphyrin complexes [M(TPP)(Cl)] (M = Fe, Mn, Co) are analyzed in detail. For [Fe(TPP)(Cl)] (1), a complete vibrational data set is obtained, including nonresonance (NR) Raman, and resonance Raman (RR) spectra at multiple excitation wavelengths as well as IR spectra. These data are completely assigned using density functional (DFT) calculations and polarization measurements. Compared to earlier works, a number of bands are reassigned in this one. These include the important, structure-sensitive band at 390 cm(-1), which is reassigned here to the totally symmetric nu(breathing)(Fe-N) vibration for complex 1. This is in agreement with the assignments for [Ni(TPP)]. In general, the assignments are on the basis of an idealized [M(TPP)]+ core with D(4h) symmetry. In this Work, small deviations from D(4h) are observed in the vibrational spectra and analyzed in detail. On the basis of the assignments of the vibrational spectra of 1, [Mn(TPP)(Cl)] (2), and diamagnetic [Co(TPP)(Cl)] (3), eight metal-sensitive bands are identified. Two of them correspond to the nu(M-N) stretching modes with B(1g) and Eu symmetries and are assigned here for the first time. The shifts of the metal sensitive modes are interpreted on the basis of differences in the porphyrin C-C, C-N, and M-N distances. Besides the porphyrin core vibrations, the M-Cl stretching modes also show strong metal sensitivity. The strength of the M-Cl bond in 1-3 is further investigated. From normal coordinate analysis (NCA), force constants of 1.796 (Fe), 0.932 (Mn), and 1.717 (Co) mdyn/A are obtained for 1-3, respectively. The weakness of the Mn-Cl bond is attributed to the fact that it only corresponds to half a sigma bond. Finally, RR spectroscopy is used to gain detailed insight into the nature of the electronically excited states. This relates to the mechanism of resonance enhancement and the actual nature of the enhanced vibrations. It is of importance that anomalous polarized bands (A(2g) vibrations), which are diagnostic for vibronic mixing, are especially useful for this purpose.  相似文献   

4.
章应辉  阮文娟  吴扬 《物理化学学报》2005,21(12):1390-1394
利用密度泛函理论(DFT)计算了5-单苯基卟啉(H2MPP)的几何结构和拉曼振动频率. 计算表明, 单个次甲基位置上的苯基取代降低了卟啉骨架大环的对称性. 苯基团取代对次甲基位置附近结构的影响较大, 而对吡咯环结构的影响较小. 计算给出的拉曼振动频率(校正因子为0.971)与实验测量数据吻合较好, 均方根误差(RMS)小于6.7 cm-1. 根据理论计算结果对实测拉曼光谱进行了指认, 计算分析和实验观察同时表明, 单个次甲基位置上的苯基取代导致卟啉大环的一些平面内简正振动, 如ν6、ν20、ν24和ν32等简正振动发生分裂. 分析认为其根本原因为单苯基取代导致的卟啉骨架大环对称性的降低.  相似文献   

5.
Detailed Fe vibrational spectra have been obtained for the heme model complex [Fe(TPP)(CO)(1-MeIm)] using a new, highly selective and quantitative technique, Nuclear Resonance Vibrational Spectroscopy (NRVS). This spectroscopy measures the complete vibrational density of states for iron atoms, from which normal modes can be calculated via refinement of the force constants. These data and mode assignments can reveal previously undetected vibrations and are useful for validating predictions based on optical spectroscopies and density functional theory, for example. Vibrational modes of the iron porphyrin-imidazole compound [Fe(TPP)(CO)(1-MeIm)] have been determined by refining normal mode calculations to NRVS data obtained at an X-ray synchrotron source. Iron dynamics of this compound, which serves as a useful model for the active site in the six-coordinate heme protein, carbonmonoxy-myoglobin, are discussed in relation to recently determined dynamics of a five-coordinate deoxy-myoglobin model, [Fe(TPP)(2-MeHIm)]. For the first time in a six-coordinate heme system, the iron-imidazole stretch mode has been observed, at 226 cm(-)(1). The heme in-plane modes with large contributions from the nu(42), nu(49), nu(50), and nu(53) modes of the core porphyrin are identified. In general, the iron modes can be attributed to coupling with the porphyrin core, the CO ligand, the imidazole ring, and/or the phenyl rings. Other significant findings are the observation that the porphyrin ring peripheral substituents are strongly coupled to the iron doming mode and that the Fe-C-O tilting and bending modes are related by a negative interaction force constant.  相似文献   

6.
A rare family of five and six-coordinated high-spin Fe(III) porphyrins incorporating weak axial ligands are synthesized and structurally characterized which demonstrate, for the first time, stepwise metal displacements in a single distorted macrocyclic environment that has generally been seen in many biological systems. The introduction of four nitro groups into the meso-positions of octaethyl porphyrin severely distorts the porphyrin geometry and provides an interesting modulation of the macrocycle properties which enables the facile isolation of "pure" high-spin Fe(III)(tn-OEP)Cl, Fe(III)(tn-OEP)(MeOH)Cl, and Fe(III)(tn-OEP)(H2O)2(+) in excellent yields in a saddle distorted macrocyclic environment that are known to stabilize intermediate spin states. The stepwise out-of-plane displacements of iron are as follows: 0.47 A for Fe(III)(tn-OEP)Cl; 0.09 A for Fe(III)(tn-OEP)(MeOH)Cl, and 0.01 A for Fe(III)(tn-OEP)(H2O)2(+) from the mean plane of the porphyrins. However, in both five and six-coordinated Fe(III) porphyrins, the Fe-Np distances are quite comparable while the porphyrin cores have expanded significantly, virtually to the same extent for the six-coordinate complexes reported here. The large size of the high-spin iron(III) atom in Fe(III)(tn-OEP)(H2O)2(+) is accommodated perfectly with no displacement of the metal. This expansion is accompanied by a significant decrease of the saddle distortion with a clear increase of the ruffling. Furthermore, the Fe atom in Fe(III)(tn-OEP)(MeOH)Cl is not out of plane because of the larger atom size; however, the displacement of the iron depends on both the relative strength of the axial ligands, as well as the nature and extent of the ring deformation. Our characterization demonstrates that increase in ruffling and/or decrease in macrocycle deformation brings the iron atom more into the plane in a distorted macrocyclic environment. Our observations thus suggest that the displacements of iron in proteins are the consequences of nonequivalent axial coordination, as well as protein induced deformations at the heme. The high-spin nature of the complexes reported here is believed to be due to the larger Fe-Np distances which then reduce substantially the interaction between iron d(x2)-y2 and porphyrin a(2u) orbital. The Fe(III)/Fe(II) reduction potential of Fe(III)(tn-OEP)Cl shows a reversible peak at large positive value (0.20 V), and no ring-centered oxidation was observed within the solvent limit (approximately 1.80 V). It is thus easier to reduce Fe(III)(tn-OEP)Cl by almost 700 mV compared to Fe(III)(OEP)Cl while oxidations are very difficult. Furthermore, the addition of 3-Cl-pyridine to Fe(III)(tn-OEP)Cl in air undergoes spontaneous auto reduction to produce the rare air-stable Fe(II)(tn-OEP)(3-Cl-py)2 that shows Fe(II)/Fe(III) oxidation peaks at high positive potential (0.79 V), which is approximately 600 mV more anodic compared to [Fe(II)(tn-OEP)Cl](-). This large anodic shift illustrates the effective removal of metal-centered electron density by the macrocycle when the metal is constrained to reside in the porphyrin plane.  相似文献   

7.
This study gives our analysis of the Raman bandwidths using the soft mode-hard mode coupling model applied to ammonium halides. The temperature dependence of our observed bandwidths for the nu5(174 cm-1) Raman mode of NH4Cl and nu5(177 cm-1) Raman mode of NH4Br, is analyzed close to phase transitions. From our analysis, we obtain beta=0.13 as the values of the critical exponent for the order parameter in the first order phase region for the ammonium halides.  相似文献   

8.
The vibrational spectra of meso-tetraphenylporphyrin diacid (H4TPP2+) have been studied with the density functional theory. Raman and IR spectra of H4TPP2+ and its N-deuterated analogue (D4TPP2+) are measured and compared with the computational results. Complete assignments of observed IR and Raman bands were proposed on the bases of calculation results. The DFT calculations reproduce 140 observed fundamentals with the RMS 8.6 cm-1. The computational as well as the experimental results reveal that the saddle-distortion of porphyrin macrocycle for the diacid leads to a significant effect on its vibrational spectra. Especially, several out-of-plane skeletal modes, which were either unobserved or very weak in the Raman spectra of CuTPP and H2TPP, are activated in the Raman spectra of the diacids. In addition, enhancement for the Raman bands of phenyl CC stretching modes were observed and attributed to the conjugation effect of pi-systems of the phenyl and the porphyrinato macrocycles.  相似文献   

9.
Raman and IR spectra of the free base p-sulfonatophenyl and phenyl meso-substituted porphyrins [5,10,15,20-tetrakis(4-sulfonatophenyl)porphyrin (TPPS4); 5,10,15-tris(4-sulfonatophenyl)-20-phenyl-porphyrin (TPPS3); 5,10-bis(4-sulfonatophenyl)-15,20-diphenylporphyrin (TPPS2A); 5,15-bis(4-sulfonatophenyl)-10,20-diphenylporphyrin (TPPS2O); and 5-(4-sulfonatophenyl)-10, 15,20-trisphenylporphyrin (TPPS1)] and their N-diprotonated derivatives (porphyrin diacids) were studied. The Raman spectra of the deuterated analogues of these porphyrins, in which the central hydrogen atoms were substituted with deuterium, were also measured. The observed vibrational bands were assigned on the basis of the deuteration shifts and compared with the structural analogues of these compounds. In IR spectra of the free-base porphyrins, the p-sulfonation of phenyl groups results in evident alteration for the phenyl modes and the porphyrin skeleton modes that are strongly coupled with phenyl vibrations. While the p-sulfonation of phenyl groups causes only slight changes for the high-frequency Raman bands (> 850 cm(-1)), dramatic shifts and band splitting were observed in the low-frequency region (< 500 cm(-1)) of Raman spectra. The observed differences of low-frequency Raman spectra were attributed to the alteration of the structure of the porphyrin ring, especially the CalphaCmCalpha bond-angles, by different meso-sulfonatophenyl substitutions. In addition, different packing style of TPPSn molecules in the aggregates is also responsible for the alteration of the vibrational spectra of the aggregated TPPSn.  相似文献   

10.
The room temperature Stokes and anti-Stokes Raman spectra of liquid CCl(4) have been recorded. The intensity ratios of anti-Stokes to Stokes Raman bands as a function of Raman shift are obtained in agreement with polarizability theory. The depolarization ratio rho (nu) as a function of Raman shift is obtained also in agreement with automatically scanned depolarization ratio rho (nu). Ratio of the intensity of the isotopic nu(1) bands indicates small deviation from the theoretical relative abundance of CCl(4) isotopes. The intensity ratio of the [nu(3)-nu(4), (nu(1)+nu(4))-nu(4)] and nu(1) bands is obtained. The consequences of the presence of different isotopes of CCl(4) on the depolarization ratio of its vibrational bands are discussed. The effects of impurities in liquid CCl(4) on depolarization ratio of the nu(1) band are estimated.  相似文献   

11.
The 1H NMR spectra of iron(III) 5-ethynyl-10,15,20-tri(p-tolyl)porphyrin [(ETrTP)Fe(III)X(n)], iron(III) 5-(phenylethynyl)-10,15,20-tri(p-tolyl)porphyrin [(PETrTP)Fe(III)X(n)], iron(III) 5-(phenylbutadiynyl)-10,15,20-tri(p-tolyl)porphyrin [(PBTrTP)Fe(III)X(n)], iron(III) 5,10,15,20-tetra(phenylethynyl)porphyrin [(TPEP)Fe(III)X(n)], iron(III) 1,4-bis-[10,15,20-tri(p-tolyl)porphyrin-5-yl]-1,3-butadiyne {[(TrTP)Fe(III)X(n)]2 B}, and 5,10,15-triphenylporphyrin [(TrPP)Fe(III)X(n)] have been studied to elucidate the impact of meso-ethynyl substitution on the electronic structure and spin density distribution of high-spin (X = Cl-, n = 1) and low-spin (X = CN-, n = 2) derivatives. The meso substituents, i.e., ethynyl, phenylethynyl, and phenylbutadiynyl, provided insight into the efficiency of spin density delocalization along structural elements that are typically applied to transmit electronic effects along multipart polyporphyrinic systems. The positive spin density localized at the meso-carbon of high-spin iron(III) ethynylporphyrins is effectively delocalized along the ethyne or butadiyne fragment as illustrated by the comparison of isotropic shifts of C(meso)-H and -CC-H determined for (TrPP)Fe(III)Cl (-82.6 ppm, 293 K) and (ETrTP)Fe(III)Cl (-49.5 ppm, 298 K). The replacement of the ethynyl hydrogen by phenyl or phenylethynyl provided evidence for the pi spin density distribution around the introduced phenyl ring. An analysis of the isotropic shifts for the low-spin bis-cyanide iron(III) porphyrins series reveals the analogous mechanism of spin density transfer. Treatment of high-spin [(TrTP)Fe(III)Cl]2 B with a base resulted in formation of the cyclic [(TrTP)Fe(III)OFe(III)(TrTP)B]2 complex linked by two mu-oxo bridges. (TPEP)H2 has been characterized by X-ray crystallography as a porphyrin dication where two molecules of trifluoroacetic acid associate with two coordinated trifluoroacetate anions. The X-ray structure of bis-tetrahydrofuran 1,4-bis[10,15,20-tri(p-tolyl)porphyrinatozinc(II)-5-yl]-1,3-butadiyne complex {[(TrTP)Zn(II)(THF)]2 B} reveals two parallel, non-coplanar [(TrTP)Zn(THF)] subunits linked by the linear butadiyne moiety.  相似文献   

12.
The preparation, EPR spectra, and crystal structures of octaethyltetraphenylporphyrinatoiron(III) having two imidazole, N-benzylimidazole, and N-methylimidazole axial ligands are reported, [(OETPP)Fe(HIm)2]Cl, [(OETPP)Fe(N-BzIm)2]Cl, and [(OETPP)Fe(N-MeIm)2]Cl. Despite large variation in axial ligand size, the unit cell parameters for all complexes are very similar; each structure has the same basic motif, with large voids formed by the extended porphyrin framework (filled by ordered or disordered axial ligands and disordered solvent), which allows differently sized ligands to fit within the same cell dimensions. Each porphyrin core adopts a saddled conformation with absolute value(deltaC(beta)) = 1.13-1.15 A. The dihedral angles between axial ligand planes, delta phi, are far from being either ideal parallel or perpendicular: 30.1 degrees, 57.2 degrees for [(OETPP)Fe(HIm)2]Cl (molecules 1 and 2), 56.8 degrees for [(OETPP)Fe(N-BzIm)(2)]Cl, and 16.0 degrees, 44.6 degrees, 59.6 degrees, and 88.1 degrees for [(OETPP)Fe(N-MeIm)2]Cl, which has disordered axial ligands. Among the complexes of this study, an axial ligand delta phi of 56.8 degrees is found to be the largest "parallel" angle (as defined by the observation of a normal rhombic or Type II EPR signal (N-BzIm, g = 3.08, 2.19, 1.31)), while 57.2 degrees is found to be the smallest "perpendicular" delta phi (as defined by the observation of a "large gmax" or Type I EPR signal (HIm, gmax = 3.24)). From the results of this study, it is clear that the size of the largest g for Types I and II complexes varies continuously, with no break between the two. While the switch in EPR signal type, from Type II to Type I, appears to be very sharp in this study, this may be somewhat artificial based upon limited numbers of examples and the required saddle distortion of the (OETPP)Fe(III) complexes. However, in comparison to several proteins with dihedral angles near 60 degrees and Type II EPR spectra, we may conclude that the switch in EPR signal type occurs near 57 degrees +/- 3-5 degrees.  相似文献   

13.
para-Nitroaniline (PNA) plays an essential role as the prototype model of push-pull chromophores. The nature and degree of participation of vibrational degrees of freedom in the charge-transfer and internal-conversion processes are current issues of great theoretical and practical importance. Ultrafast time-resolved anti-Stokes resonance Raman spectroscopy (TRARRS) experiments on PNA in dimethyl sulfoxide with three different excitation wavelengths were performed to probe these dynamical influences. The vibrational dynamics associated with S0 were independent of incident wavelength, and this supports the picture that the S1 dynamics are fast relative to the rate of intersystem crossing. The phenyl breathing mode nu(19) (860 cm(-1)) and the symmetric NO2 stretch nu(29) (1310 cm(-1)) exhibited vibrational lifetimes in S0 of 8.1 and 5.2 ps, respectively. No evidence for inhomogeneous broadening of the charge-transfer band in the UV/Vis absorption spectrum was found.  相似文献   

14.
本文合成了四个新型双核配合物、[Cu(samen)Fe(L)Cl]和[Cu(sampn)Fe(L)Cl]。经元素分析、IR, 电导、磁性测量等手段推定配合物具有酚氧桥结构, Cu(II)及Fe(III)的配位环境分别为平面四方及四角锥的构型, Fe(III)离子的自旋态S=3/2。测定了配合物[Cu(samen)Fe(L)Cl]的变温磁化率(4-300K), 参数J和θ值表明两个双核配合物中金属离子之间有中等程度的反铁磁性超交换作用和双核单元之间有弱的分子间相互作用。  相似文献   

15.
The dynamics of porphyrin ring inversion of a number of Fe(III) complexes of octamethyltetraphenylporphyrin, (OMTPP)Fe(III); octaethyltetraphenylporphyrin, (OETPP)Fe(III); octaethyltetra(perfluorophenyl)porphyrin, (F(20)OETPP)Fe(III); and tetra-beta,beta'-tetramethylenetetraphenyl-porphyrin, (TC(6)TPP)Fe(III), having either one (Cl(-), ClO(4-)) or two [4-(dimethylamino)pyridine, 4-Me(2)NPy; 1-methylimidazole, 1-MeIm; tert-butylisocyanide, t-BuNC; or cyanide, CN(-)] axial ligands have been characterized by 1D dynamic NMR (DNMR) and 2D (1)H NOESY/EXSY spectroscopies as a function of temperature. The activation parameters, Delta H++, Delta S++, and Delta G++(298), and the extrapolated rate constants at 298 K for three chloride, one perchlorate, and three bis-(4-Me(2)NPy) complexes as well as [FeOETPP(1-MeIm)(2)]Cl, [FeOETPP(t-BuNC)(2)]ClO(4), and Na[FeOETPP(CN)(2)] have been determined. The results indicate that there is a wide range of flexibility for the porphyrin core (k(ex)(298) = 10-10(7) s(-1)) that decreases in the order TC(6)TPP > OMTPP > F(20)OETPP > or = OETPP, which correlates with increasing porphyrin nonplanarity. To determine the effect of axial ligands, we calculated the free energy of activation, Delta G++(298) for OETPPFe(III) bis-ligated with 4-Me(2)NPy, 1-MeIm, or 4-CNPy (approximately 59 kJ mol(-1)), and for complexes with small cylindrical ligands (t-BuNC and CN(-)) (approximately 37 kJ mol(-1)). These data suggest that the Delta G++(298) for planar ligand rotation is roughly 20-25 kJ mol(-1).  相似文献   

16.
Model ferric heme nitrosyl complexes, [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+), where TPP is the dianion of 5,10,15,20-tetrakis-phenyl-porphyrin and TPFPP is the dianion of 5,10,15,20-tetrakis-pentafluorophenyl-porphyrin, have been obtained as isolated species by the gas phase reaction of NO with [Fe(III)(TPP)](+) and [Fe(III) (TPFPP)](+) ions delivered in the gas phase by electrospray ionization, respectively. The so-formed nitrosyl complexes have been characterized by vibrational spectroscopy also exploiting (15)N-isotope substitution in the NO ligand. The characteristic NO stretching frequency is observed at 1825 and 1859 cm(-1) for [Fe(III)(TPP)(NO)](+) and [Fe(III)(TPFPP)(NO)](+) ions, respectively, providing reference values for genuine five-coordinate Fe(III)(NO) porphyrin complexes differing only for the presence of either phenyl or pentafluorophenyl substituents on the meso positions of the porphyrin ligand. The vibrational assignment is aided by hybrid density functional theory (DFT) calculations of geometry and electronic structure and frequency analysis which clearly support a singlet spin electronic state for both [Fe(TPP)(NO)](+) and [Fe(TPFPP)(NO)](+) complexes. Both TD-DFT and CASSCF calculations suggest that the singlet ground state is best described as Fe(II)(NO(+)) and that the open-shell AFC bonding scheme contribute for a high-energy excited state. The kinetics of the NO addition reaction in the gas phase are faster for [Fe(III)(TPFPP)](+) ions by a relatively small factor, though highly reliable because of a direct comparative evaluation. The study was aimed at gaining vibrational and reactivity data on five-coordinate Fe(III)(NO) porphyrin complexes, typically transient species in solution, ultimately to provide insights into the nature of the Fe(NO) interaction in heme proteins.  相似文献   

17.
The synthesis of a mononuclear, five-coordinate ferrous complex [([15]aneN4)FeII(SPh)](BF4) (1) is reported. This complex is a new model of the reduced active site of the enzyme superoxide reductase (SOR), which is comprised of a [(NHis)4(Scys)FeII] center. Complex 1 reacts with alkylhydroperoxides (tBuOOH, cumenylOOH) at low temperature to give a metastable, dark red intermediate (2a: R = tBu; 2b: R = cumenyl) that has been characterized by UV-vis, EPR, and resonance Raman spectroscopy. The UV-vis spectrum (-80 degrees C) reveals a 526 nm absorbance (epsilon = 2150 M-1 cm-1) for 2a and a 527 nm absorbance (epsilon = 1650 M-1 cm-1) for 2b, indicative of alkylperoxo-to-iron(III) LMCT transitions, and the EPR data (77 K) show that both intermediates are low-spin iron(III) complexes (g = 2.20 and 1.97). Definitive identification of the Fe(III)-OOR species comes from RR spectra, which give nu(Fe-O) = 612 (2a) and 615 (2b) cm-1, and nu(O-O) = 803 (2a) and 795 (2b) cm-1. The assignments for 2a were confirmed by 18O substitution (tBu18O18OH), resulting in a 28 cm-1 downshift for nu(Fe-18O), and a 46 cm-1 downshift for nu(18O-18O). These data show that 2a and 2b are low-spin FeIII-OOR species with weak Fe-O bonds and suggest that a low-spin intermediate may occur in SOR, as opposed to previous proposals invoking high-spin intermediates.  相似文献   

18.
四(对—羟基)苯基卟啉配合物的傅里叶变换红外光声光谱   总被引:11,自引:0,他引:11  
四(对-羟基)苯基卟啉(H2THPP)不仅能作为分析试剂,而且有一定的抗癌活性,还可作为合成卟啉类液晶材料的中间体.这种配体及其配合物由于颜色深、透光性能差和散射较强,用普通红外光谱法开展其振动光谱研究存在一定的困难.我们在用红外光声光谱(FTIR-PAS)技术[1]成功地研究了部分过渡金属、稀土金属叶琳配合物的基础上[2,3],测试并研究了H2THPP及其Cr(III)、Mn(III)、Fe(III)、Co(II)、Ni(II)、Cu(II)、Zn(II)配合物在3700~200cm-1范围内的FTIR-PAS.对主要谱带进行了经验归属,讨论了配…  相似文献   

19.
IntroductionRecently.therehasbeengreatillterestinthediscoveryofthemesoporouscrystallinematerialMCM-4ill,2].MCM-41isthecollectivenameforafamilyofsolidswithporesizebetween16and100A,whichpossessesahexagonalarrayofuniformmesopores.Ithasbeenfoundthatmetalatoms…  相似文献   

20.
The normal-mode spectrum for the four-coordinated heme compound Fe(II) octaethylporphyrin, Fe(OEP), has been determined by refining force constants to the experimental Fe vibrational density of states measured with nuclear resonance vibrational spectroscopy (NRVS). Convergence of the calculated spectrum to the data was achieved by first imposing D4 symmetry on the model structure as well as the force constants, progressively including different internal coordinates of motion, then allowing the true Ci (or S2) point group symmetry of the C(i)1 Fe(OEP) crystal structure. The NRVS-refined normal modes are in good agreement with Raman and IR spectra at high frequencies. Prior density functional theory predictions for a model porphyrin are similar to the core modes computed with the best-fit force field, but significant differences between D4 and Ci modes underline the sensitivity of porphyrin Fe normal modes to structural details. Some differences between the Ci best fit and the NRVS data can be attributed to intermolecular contacts not included in the normal-mode analysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号