首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
用稳态光谱以及皮秒瞬态荧光光谱研究了新型有机电致发光分子胆甾醇修饰羟基喹啉锌(Zn(ChQ)2)的聚集诱导荧光蓝移性质. 在Zn(ChQ)2的极性溶剂溶液中, 分子激发后会发生从胆甾醇基团向喹啉环的光致电子转移, 转移后形成了“扭转的分子内电荷转移态”作为新的荧光发射态. 而在薄膜态中, 分子由于聚集产生空间位阻, 不能形成新的荧光发射态, 相对于极性溶剂中, 产生聚集荧光增强效应, 荧光发射峰会蓝移, 发射强度会增强. 在薄膜态中, 全波长上的超快荧光衰减说明存在分子间光致能量转移过程.  相似文献   

2.
用化学诱导动态核极化(CIDNP)方法研究了三乙胺与2-氯-5-甲氧基对苯醌在 C6D6,CH3CN溶剂中的反应机理,实验结果表明反应过程中首先形成基态电荷转移 络合物(CTC),在CD3CN中,光照电荷分离形成离子自由基对,使三乙胺亚甲基产 生发射极化信号。同时用UV-vis实验证实CTC的存在。  相似文献   

3.
By the measurements of the solvent and temperature effects of the fluorescence emission spectra and lifetime of N-phenyl phenothiazine (PHZ) and N-(2-pyridine) phenothiazine (PYZ),the existence of strongly twisted intramolecular charge transfer (TICT) state in PYZ emission spectra is proved.The exciplex formed by PHZ, PYZ and dimethyl terephthalate (DMTP) is investigated, and moreover, the transient absorption spectra of positive and negative ions as the results of the dissociation of the exciplex in the polar solvents is observed through the flash photolysis.  相似文献   

4.
Photophysical process of hexadecyl 4-biphenylamino benzoate   总被引:5,自引:0,他引:5  
The photophysical properties of hexadecyl 4-biphenylamino benzoate (HBAB), the molecule of which possesses a polar end composed of donor (triphenylamino group) and acceptor (ester group) and a long non-polar alkyl tail, have been carefully studied in different conditions. The results show that the twisted intramolecular charge transfer (TICT) emission is given in polar solvents at room temperature and intramolecular charge transfer (ICT) emission is given at 77 K. These can be supported by the solvent effect, temperature effect and the quenching process.  相似文献   

5.
A new fluorochromic dye was obtained from the reaction of 9-aminoacridine with ethyl-2-cyano-3-ethoxyacrylate. It displays complex fluorescence that is ascribed to normal emission from the acridine chromophore in addition to excited-state intramolecular charge transfer (ESICT) formed upon light excitation. The analysis of the fluorescence decays in different solvents reveals two short-lived components in the range of 80-450 ps and 0.7-3.2 ns, ascribed to the formation and decay of the intramolecular charge transfer (ICT) state, in addition to a third component of about 9.0 ns, which is related to the normal emission from the acridine singlet excited state, probably in an enol-imine tautomeric form. The ICT emission is readily quenched by water addition to polar solvents, and this effect is ascribed to changes in the keto-amine/enol-imine equilibrium of this fluorochromic dye.  相似文献   

6.
The photophysical properties of the newly synthesized unsymmetrically substituted aromatic acetylene derivative 9-(2-(4-(N,N-dimethylamino)phenyl)ethynyl)anthracene-10-carbonitrile (CNAacDMA) were investigated with the steady-state and time-resolved fluorometry. In saturated hydrocarbon solvents, only fluorescence from a locally-excited state (LE) is recorded. In more polar solvents however, excitation of this dye leads to a charge transfer state (CT). In moderate polar solvents (ϵ=4–8) dual emission is observed as a result of competition between structural change and intramolecular charge transfer in the excited state. In polar solvents only one emission band, at shorter wavelength than CT emission, is observed, indicating a bidirectional solvatofluorochromism.  相似文献   

7.
Abstract— The effect of solvent polarity on the electronic absorption and fluorescence properties of neutral red (NR), a phenazine-based dye of biological importance has been investigated in several neat and mixed solvents. An unusual dual solvatochromic behavior has been observed that reveals the existence of two closely spaced electronic excited states in NR. In low-polarity solvents the fluorescence of the NR is mainly emitted from the localized excited state, whereas in high-polarity solvents the emission from the charge transfer state dominates. The dipole moments of the localized and charge transfer states of NR have been estimated from the solvatochromic shifts. The dipole moment of the localized excited state (4.8 D) is only slightly higher than that of the ground state (2.0 D), while that of the charge transfer state is drastically higher (17.5 D). Fluorescence quantum yields and the life-times of NR have been determined in different solvents and correlated with the solvatochromic shifts.  相似文献   

8.
We report here the one-pot synthesis of benzo[1,2-a : 3,4-a′ : 5,6-a′′]triazulene ( BTA ), wherein three azulene units are embedded through a tandem reaction comprising two steps, Suzuki coupling and Knoevenagel condensation, between a readily available triborylated truxene precursor and 8-bromo-1-naphthaldehyde. Its nitration leads to a regioselective trinitrated product, namely, BTA - NO2 . Single-crystal X-ray crystallography revealed that the superstructure of BTA consists of a dimer stacked by two enantiomeric helicene conformers, while that of BTA - NO2 consists of an unprecedented π-tetramer stacked from two enantiomeric dimers, that is, four distinct helicene conformers. Both compounds show excellent stability and fluorescence with large Stokes shifts of up to 5100 cm−1. In addition, BTA - NO2 exhibits a unique solvatochromic effect in different solvents and hydrogen-bonding-induced emission transfer in different ratios of THF/H2O solutions.  相似文献   

9.
采用密度泛函、含时密度泛函和单激发组态相互作用(CIS)方法研究了苯并咪唑苯并异喹啉酮(1)及其衍生物的电子结构特性和光谱性质,并用极化连续模型考虑了溶剂的影响.结果表明,化合物1及其衍生物的吸收和荧光发射过程的电子垂直跃迁是由于分子内的电荷迁移.化合物1中取代基的位置及给吸电子能力影响其HOMO-LUMO能隙和电荷迁移量.在分子中引入吸电子和给电子取代基,均使最大吸收波长和最大荧光发射波长红移,计算的结果与实验结果吻合得较好.  相似文献   

10.
Functional poly(aroyltriazoles) (PATAs) were synthesized by heating mixtures of bis(aroylacetylene)s and diazides in polar solvents such as DMF/toluene at a moderate temperature of 100 °C with high molecular weights (Mw up to 17 200) and regioregularities (1,4-regioisomeric ratio up to ∼95%) in high yields (up to ∼95%). The obtained polymers are soluble in common organic solvents and are thermally stable. The PATAs containing triphenylamine units emit visible light and show unique solvatochromism, exhibiting large two-photon absorption cross sections due to the intramolecular charge transfer between their electron-donating triphenylamine and electron-accepting aroyltriazole units. The tetraphenylethene (TPE)-functionalized polymer shows intriguing aggregation-induced emission phenomenon, that is, the polymer is weakly emissive in its solution state but emit strongly in its aggregate/solid state with quantum yield of ∼7.1%.  相似文献   

11.
Absorption and emission spectra of 9-N,N-dimethylaniline decahydroacridinedione (DMAADD) have been studied in different solvents. The fluorescence spectra of DMAADD are found to exhibit dual emission in aprotic solvents and single emission in protic solvents. The effect of solvent polarity and viscosity on the absorption and emission spectra has also been studied. The fluorescence excitation spectra of DMAADD monitored at both the emission bands are different. The presence of two different conformation of the same molecule in the ground state has lead to two close lying excited states, local excited (LE) and charge transfer (CT), and thereby results in the dual fluorescence of the dye. A CTstate involving the N,N-dimethylaniline group and the decahy droacridinedione chromophore as donor and acceptor, respectively, has been identified as the source of the long wavelength anomalous fluorescence. The experimental studies were supported by ab initio time dependent-density functional theory (TDDFT) calculations performed at the B3LYP/6-31G* level. The molecule possesses photoinduced electron transfer (PET) quenching in the LE state, which is confirmed by the fluorescence lifetime and fluorescent intensity enhancement in the presence of transition metal ions.  相似文献   

12.
An interesting flourophore, 4‐(2,5‐dimethoxyphenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) was synthesized by mixing an equivalent molar quantity of hippuric acid and 2,5‐dimethoxybenzaldehyde in acetic anhydride in the presence of anhydrous sodium acetate. The absorption and fluorescence characteristics of 4‐(2,5‐dimethoxy‐phenylmethelene)‐2‐phenyl‐5‐oxazolone (DMPO) were investigated in different solvents. DMPO dye exhibits red shift in both absorption and emission spectra as solvent polarity increases, indicating change in the dipole moment of molecules upon excitation due to an intramolecular charge transfer interaction. The fluorescence quantum yield depends strongly on the properties of the solvents, which was attributed to positive and negative solvatokinetic effects. A crystalline solid of DMPO gave strong excimer like emission at 630 nm due to the excitation of molecular aggregates. This is expected from the idealized crystal structure of the dye that belongs to the B‐type class of Steven's Classification. DMPO displayed fluorescence quenching by triethylamine via nonemissive exciplex formation.  相似文献   

13.
Preferential solvation of a solvatochromic probe has been studied in binary mixtures comprising of a non-protic and a protic solvent. The non-protic solvents employed are carbon tetrachloride (CCl(4)), acetonitrile (AcN) and N,N-dimethyl formamide (DMF) and the protic solvents are methanol (MeOH) and ethanol (EtOH). The probe molecule exhibits different spectroscopic characteristics depending upon the properties of the solubilizing media. The observed spectral features provide an indication of the microenvironment immediately surrounding the probe. Solvatochromic shifts of the ground and excited states of the probe were analysed by monitoring the charge transfer absorption band and the fluorescence emission spectra in terms of the solute-solvent and solvent-solvent interactions. Fluorescence emission spectra show the dual emission due to excited state proton transfer nature of the probe molecule. The effect of solvent and the excitation energy on dual emission are also studied. The observed magnitude of the Stokes shift in the above solvents has been used to deduce experimentally the dipole moment ratio of the probe molecule for the excited state to the ground state. The dipole moment of excited state is higher than the ground state.  相似文献   

14.
In this paper, we described the synthesis and characterization of new diphenylethylene bearing imino group. We concentrated particularly on the investigation of the possibility of the excited state intramolecular charge transfer (ESIPT) of the new dyes experimentally and theoretically. The absorption and fluorescence spectroscopy of the dyes were determined in various solvents. The results showed that the maximal absorption wavelength of 2‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C1 ) and 4‐[(4′‐N,N‐dimethylamino‐diphenylethylene‐4‐ylimino)methyl]phenol ( C2 ) exhibited almost independence on the solvent polarity. While as contrast, the maximal fluorescence wavelength of the dyes showed somewhat dependence on the solvent polarity. In particular, C1 displayed well‐separated dual fluorescence spectroscopy. The second fluorescence peak was characterized with an "abnormal" fluorescence emission wavelength in aprotic solvents with large Stokes shift (ca. 140 nm in THF), which was much more than normal Stokes shift (ca. 30 nm in THF). This emission spectroscopy could be assigned to ESIPT emission. On the other hand, the ESIPT fluorescence of C1 was much reduced or lost in the protic solvents. While, only normal fluorescence emission was detected in various solvents. Although the absorption maxima of C1 exhibited about 10 nm red‐shift with respect to those of C2 , the normal fluorescence maxima of C1 and C2 were almost identical in various solvents. These results suggested that C1 could undergo ESIPT, but C2 was not able to proceed ESIPT. The molecular geometry optimization of phototautomers in the ground electronic state (S0) was carried out with HF method (Hartree‐Fock) and at DFT level (Density Functional Theory) using B3LYP both, while the CIS was employed to optimize the geometries of the first singlet excited state (S1) of the phototautomers of C1 and C2 respectively. The properties of the ground state and the excited state of the phototautomers of C1 and C2 , including the geometrical parameter, the energy, the frontier orbits, the Mulliken charge and the dipole moment change were performed and compared completely. The data were analyzed further based on our experimental results. Furthermore, the absorption and fluorescence spectra were calculated in theory and compared with the measured ones. The rate constant of internal proton transfer (9.831×1011 s?1) of C1 was much lower than that of salicylidene methylamine ( C3 , 2.045×1015 s?1), which was a typical Schiff base compound and was well demonstrated to undergo ESIPT easily under photoexcitation.  相似文献   

15.
Abstract— A tetrahydrochrysene system that embodies a hydroxy- and nitro-substituted stilbene chromophore held rigidly near planarity by the tetracyclic nature of the compound was prepared as a fluorescent ligand for the estrogen receptor. It shows strong solvent-dependent fluorescence at long wavelengths. The solvent polarity dependence suggests that the fluorescence arises from an excited state with much nπ* character in cyclohexane; stronger emission comes from an intramolecular charge transfer state that has lower energy in more polar solvents, and finally progressive quenching of the charge transfer state occurs in solvents of higher polarity. The quenching effect is particularly evident in protic solvents. In water, however, the compound shows fluorescence of unusually high energy for an intramolecular charge transfer state, which suggests that photochemistry may be occurring. In solutions of gamma-cyclodextrin, emission from the nitrotetrahydrochrysene is red shifted and intensified relative to water. Photobleaching occurs in H2O but not in ethanol or gamma-cyclodextrin solution. The change in dipole moment between the ground and excited states for the nitrochrysene is 12.9 D, similar to our previous measurements for related nitrostilbenes. The compound displays red-shifted emission in triethylamine, perhaps due to an excited state hydrogen-bonded complex, The absorption and emission properties of the corresponding nitrophenolate were also studied. The nitrophenolate exhibits reverse solvatochromism in its absorption spectra. In conclusion, the high sensitivity of the emission energy and quantum yield of the title compound make it of potential utility as a fluorescent probe.  相似文献   

16.
Benzyldimethyltetradecylammonium (BA14(+)) salts with anionic ligands (X(-)), such as bis(2-ethylhexyl)sulfosuccinate, bis(2-ethylhexyl)phosphate (BEHP(-)), and benzotriazole (BTA(-)) anions, were prepared. These salts were soluble in various organic solvents. The luminescence emission spectra of organic solutions of a red luminescent, tris(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octadionato)europium(III) complex in the presence of the BA14X's were recorded. The emission intensity of the Eu(III) complex was increased remarkably by the addition of BA14X (X(-) = BEHP(-) and BTA(-)). This effect can be attributed to the formation of 1:1 X(-)-adducts of the Eu(III) complex, in which the asymmetry of the ligand field is increased so as to enhance the emission efficiency of the (5)D(0)→(5)F(2) transition. The enhancement effect by BA14X was higher than that of charge-neutral ligands, such as tri-n-octylphosphine oxide and 1,10-phenanthroline, which have been used as second ligands to enhance the emission efficiency of tris(β-diketonato)europium(III) complexes.  相似文献   

17.
Absorption, steady state fluorescence and time-resolved fluorescence spectra of omeprazole (OMP) have been studied in solvents of different polarity and pH. With an increase in the polarity of the solvents, blue shift is observed in the longer wavelength whereas red shift is noticed in the shorter wavelength band. The dual emission observed in non-polar solvents suggests that the energy of the twisted intramolecular charge transfer (TICT) state is lower than that of the locally excited (LE) state. The normal Stokes-shifted band originates from the LE state, and the large Stokes-shifted band is due to the emission from a TICT state. The Stokes shift of OMP is correlated with various solvent polarity scales like ET(30) and f?(D,n).  相似文献   

18.
The photophysical behaviour of trans-methyl p-(dimethylamino) cinnamate (t-MDMAC) donor–acceptor system has been investigated by steady-state absorption and emission spectroscopy and quantum chemical calculations. The molecule t-MDMAC shows an emission from the locally excited state in non-polar solvents. In addition to weak local emission, a strong solvent dependent red shifted fluorescence in polar aprotic solvents is attributed to highly polar intramolecular charge transfer state. However, the formation of hydrogen-bonded clusters with polar protic solvents has been suggested from a linear correlation between the observed red shifted fluorescence band maxima with hydrogen bonding parameters (). Calculations by ab initio and density functional theory show that the lone pair electron at nitrogen center is out of plane of the benzene ring in the global minimum ground state structure. In the gas phase, a potential energy surface along the twist coordinate at the donor (–NMe2) and acceptor (–CH = CHCOOMe) sites shows stabilization of S1 state and destabilization S2 and S0 states. A similar potential energy calculation along the twist coordinate in acetonitrile solvent using non-equilibrium polarized continuum model also shows more stabilization of S1 state relative to other states and supports solvent dependent red shifted emission properties. In all types of calculations it is found that the nitrogen lone pair is delocalized over the benzene ring in the global minimum ground state and is localized on the nitrogen centre at the 90° twisted configuration. The S1 energy state stabilization along the twist coordinate at the donor site and localized nitrogen lone pair at the perpendicular configuration support well the observed dual fluorescence in terms of proposed twisted intramolecular charge transfer (TICT) model.  相似文献   

19.
Intramolecular charge-transfer reaction in chiral (S) 1,2,3,4-tetrahydro-3-isoquinoline methanol (THIQM) has been investigated in the condensed phase and in jet-cooled conditions by means of laser-induced fluorescence, dispersed emission, resonance-enhanced two-photon ionization, and IR-UV double resonance experiments, as well as quantum chemical calculations. In the condensed phase, THIQM only shows local emission in nonpolar and protic solvents and dual emission in aprotic polar solvents, where the solvent-polarity dependent Stokes shifted emission is ascribed to a state involving charge transfer from the nitrogen lone pair to the benzene π-cloud. Ab initio calculations reveal two low-energy conformers, which are observed in jet-cooled conditions. In the most stable conformer, THIQM(I), the CH(2)OH substituent acts as a hydrogen bond donor to the nitrogen lone pair in the equatorial position, while the second most stable conformer, THIQM(II), corresponds to the opposite NH···O hydrogen bond, with the nitrogen lone pair in the axial position. The two low-energy jet-cooled conformers of THIQM evidenced from the laser-induced fluorescence and dispersed emission spectra only show structured local emission. Complexes with usual solvents reproduce the condensed phase properties. The jet-cooled complex with aprotic polar solvent acetonitrile shows both local emission and charge transfer emission as observed in solution. The jet-cooled hydrate mainly shows local emission due to the unavailability of the nitrogen lone pair through intermolecular hydrogen bonding.  相似文献   

20.
The spectral and photophysical properties of a new intramolecular charge transfer (ICT) probe, namely 4′-dimethylamino-2,5-dihydroxychalcone (DMADHC) were studied in different solvents by using steady-state absorption and emission spectroscopy. Whereas the absorption spectrum undergoes minor change with increasing polarity of the solvents, the fluorescence spectrum experiences a distinct bathochromic shift in the band position and the fluorescence quantum yield increases reaching a maximum before decrease with increasing the solvent polarity. The magnitude of change in the dipole moment was calculated based on the Lippert–Mataga equation. These results give the evidence about the intramolecular charge transfer character in the emitting singlet state of this compound.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号