首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An H  Han Z  Xu T 《Inorganic chemistry》2010,49(24):11403-11414
A family of three-dimensional (3D) architectures based on lanthanide-substituted polyoxometaloborate building blocks, [LnK(H(2)O)(12)][Ln(H(2)O)(6)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·20H(2)O (Ln = Ce 1, Nd 2), H(2)K(2)(H(2)O)(n)[(C(6)NO(2)H(5))Ln(H(2)O)(5)](2)[(H(2)O)(4)LnBW(11)O(39)H](2)·18H(2)O (Ln = Ce n = 8 3, Nd n = 9 4, C(6)NO(2)H(5) = pyridine-4-carboxylic acid), have been synthesized and characterized by elemental analysis, IR spectroscopy, thermogravimetric (TG) analysis, powder X-ray diffraction and single crystal X-ray diffraction. Compounds 1 and 2 are isostructural, and are built up of lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by Ln(3+) cations to form a 3D open framework with one-dimensional (1D) channels. The polyoxoanion [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) consists of two α(1)-type mono-Ln-substituted Keggin anions, constituted by two [BW(11)O(39)H](8-) polyoxoanions and two lanthanide cations. When pyridine-4-carboxylic acid ligand was added to the reaction system of 1, 2, compounds 3, 4 were obtained. Isostructural compounds 3 and 4 are constructed from the lanthanide-substituted double-Keggin-type polyoxoanions [{(H(2)O)(4)Ln(BW(11)O(39)H)}(2)](10-) linked by the [Ln(C(6)NO(2)H(5))](3+) bridges to form a 3D channel framework. From the topological point of view, the 3D nets of compounds 1-4 are binodal with three- and six-connected nodes and exhibit a rutile topology. Compounds 1-4 represent the examples of 3D architectures based on lanthanide-substituted polyoxometalates. The magnetic properties of compounds 1-4 have been studied by measuring their magnetic susceptibility in the temperature range 2-300 K.  相似文献   

2.
Three organic-inorganic hybrid copper-lanthanide heterometallic germanotungstates, {[Cu(en)(2)(H(2)O)] [Cu(3)Eu(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (1), {[Cu(en)(2)(H(2)O)][Cu(3)Tb(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·11H(2)O (2) and {[Cu(en)(2)(H(2)O)][Cu(3)Dy(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)·10H(2)O (3) and three polyoxometalate hybrids built by lanthanide-containing germanotungstates and copper-ethylendiamine complexes, Na(2)H(6)[Cu(en)(2)(H(2)O)](8){Cu(en)(2)[La(α-GeW(11)O(39))(2)](2)}·18H(2)O (4), K(4)H(2)[Cu(en)(2)(H(2)O)(2)](5)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Pr(α-GeW(11)O(39))(2)](2)}·16H(2)O (5) and KNa(2)H(7)[enH(2)](3)[Cu(en)(2)(H(2)O)](2)[Cu(en)(2)](2){Cu(en)(2)[Er(α-GeW(11)O(39))(2)](2)}·15H(2)O (6) (en = ethylenediamine) have been hydrothermally synthesized and structurally characterized by elemental analyses, inductively coupled plasma atomic emission spectrometry (ICP-AES) analyses, IR spectra, powder X-ray diffraction (PXRD), X-ray photoelectron spectroscopy (XPS) and single-crystal X-ray diffraction. 1-3 are essentially isomorphous and their main skeletons display the interesting dimeric motif {[Cu(3)Ln(en)(3)(OH)(3)(H(2)O)(2)](α-GeW(11)O(39))}(2)(4-), which is constructed from two {Cu(3)LnO(4)} cubane anchored monovacant [α-GeW(11)O(39)](8-) fragments through two W-O-Ln-O-W linkers. The primary backbones of 4-6 exhibit the tetrameric architecture {Cu(en)(2)[Ln(α-GeW(11)O(39))(2)](2)}(24-) built by two 1?:?2-type [Ln(α-GeW(11)O(39))(2)](13-) moieties and one [Cu(en)(2)](2+) bridge, albeit they are not isostructural. To our knowledge, 1-6 are rare polyoxometalate derivatives consisting of copper-lanthanide heterometallic/lanthanide germanotungstate fragments. 1 exhibits antiferromagnetic coupling interactions within the {Cu(3)EuO(4)} cubane units, while 2 and 3 display dominant ferromagnetic interactions between the Tb(III)/Dy(III) and Cu(II) cations. The room-temperature solid-state photoluminescence properties of 1-3 have been investigated.  相似文献   

3.
The reactivity of the [alpha-SiW(11)O(39)](8-) monovacant polyoxometalate with lanthanide has been investigated for four different trivalent rare-earth cations (Ln = Nd(III), Eu(III), Gd(III), Yb(III)). The crystal structures of KCs(4)[Yb(alpha-SiW(11)O(39))(H(2)O)(2)] x 24H(2)O (1), K(0.5)Nd(0.5)[Nd(2)(alpha-SiW(11)O(39))(H(2)O)(11)] x 17H(2)O (2a), and Na(0.5)Cs(4.5)[Eu(alpha-SiW(11)O(39))(H(2)O)(2)] x 23H(2)O (3a) are reported. The solid-state structure of compound 1 consists of linear wires built up of [alpha-SiW(11)O(39)](8-) anions connected by Yb(3+) cations, while the linkage of the building blocks by Eu(3+) centers in 3a leads to the formation of zigzag chains. In 2a, dimeric [Nd(2)(alpha-SiW(11)O(39))(2)(H(2)O)(8)](10-) entities are linked by four Nd(3+) cations. The resulting chains are connected by lanthanide ions, leading to a bidimensional arrangement. Thus, the dimensionality, the organization of the polyoxometalate building units, and the Ln/[alpha-SiW(11)O(39)](8-) ratio in the solid state can be tuned by choosing the appropriate lanthanide. The luminescent properties of compound 3a have been studied, showing that, in solution, the polymer decomposes to give the monomeric complex [Eu(alpha-SiW(11)O(39))(H(2)O)(4)](5-). The lability of the four exogenous ligands connected to the rare earth must allow the functionalization of this lanthanide polyanion.  相似文献   

4.
Reaction of in situ generated copper(II)-monosubstituted Keggin polyoxometalates and copper(II)-bipyridine-oxalate complexes in the corresponding alkaline acetate buffer led to the formation of hybrid metal organic-inorganic compounds K(2)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)].14H(2)O (1), K(14)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}](2)[SiW(11)O(39)Cu(H(2)O)].55H(2)O (2), (NH(4))(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (3), and Rb(4)[{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}].10H(2)O (4). Their structures have been established by single-crystal X-ray diffraction. The main structural feature of these compounds is the presence of copper(II)-monosubstituted alpha-Keggin polyoxoanions as inorganic building blocks, on which the mu-oxalatodicopper metalorganic blocks are supported. Compound 1contains the discrete hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(H(2)O)(2)(mu-ox)}(2)](2)(-), whereas the polymeric hybrid polyanion [{SiW(11)O(39)Cu(H(2)O)}{Cu(2)(bpy)(2)(mu-ox)}(2)](n)(4)(n)(-) gives a monodimensional character to compounds 2-4. Magnetic and EPR results are discussed with respect to the crystal structure of the compounds. DFT calculations on both the [Cu(2)(bpy)(2)(H(2)O)(4)(mu-ox)](2+) cationic complex and the metalorganic blocks have been performed in order to determine the optimized geometry and the magnetic coupling constants, respectively.  相似文献   

5.
Five novel lanthanoid-containing silicotungstates with polymeric crystal structures [Ln(2)(H(2)O)(7)Si(2)W(18)O(66)](n)(10n-) [Ln = Gd(III) (Gd-1 and Gd-2), Tb(III), Ho(III)] and [Dy(2)(H(2)O)(6.5)(C(2)H(4)O(2))(0.5)Si(2)W(18)O(66)](n)(10n-) were obtained from the one-step reaction of Na(10)[SiW(9)O(34)]·nH(2)O with Ln(NO(3))(3)·nH(2)O in a sodium acetate buffer. The compounds were characterized by single-crystal X-ray diffraction and a wide range of analytical methods, including FT-IR, UV/vis, and photoluminescence spectroscopy as well as electrochemistry and thermogravimetric analysis. This new polyoxotungstate series is the first example of lanthanoids embedded in the open Wells-Dawson silicotungstate anion [α-Si(2)W(18)O(66)](16-). The lanthanoid-containing Wells-Dawson-type polyoxoanions [Ln(2)(H(2)O)(7)Si(2)W(18)O(66)](10-) [Ln = Gd(III) (Gd-1 and Gd-2), Tb(III), Ho(III)] and [Dy(2)(H(2)O)(6.5)(C(2)H(4)O(2))(0.5)Si(2)W(18)O(66)](10-) are linked by Ln(3+) cations to form 3D architectures for Gd-1 or 2D frameworks for the isostructural compounds Tb-2, Dy-2, Ho-2, and Gd-2. The structure-directing influence of the lanthanoid cation on the local structure of the dimeric building blocks and on the crystal packing motifs is investigated in detail. The photoluminescence properties of Tb-2 and Dy-2 were investigated at room temperature, and Ho-2 exhibits an interesting photochromic behavior. The magnetic susceptibility of Gd-1 and Gd-2 was studied in the temperature range between 2 and 300 K for its effective magnetic moment.  相似文献   

6.
Cong R  Yang T  Wang Z  Sun J  Liao F  Wang Y  Lin J 《Inorganic chemistry》2011,50(5):1767-1774
Ln(2)B(6)O(10)(OH)(4)?H(2)O (Ln = Pr, Nd, Sm-Gd, Dy, Ho, and Y), a new series of hydrated rare earth borates, have been synthesized under hydrothermal conditions. A single crystal of Nd analogue was used for the structure determination by X-ray diffraction. It crystallizes in the monoclinic space group C2/c with lattice constants a = 21.756(4), b = 4.3671(9), c = 12.192(2) ?, and β = 108.29(3)°. The other compounds are isostructural to Nd(2)B(6)O(10)(OH)(4)?H(2)O. The fundamental building block (FBB) of the polyborate anion in this structure is a three-membered ring [B(3)O(6)(OH)(2)](5-). The FBBs are connected by sharing oxygen atoms forming an infinite [B(3)O(5)(OH)(2)](3-) chain, and the chains are linked by hydrogen bonds, establishing a two-dimensional (2-D) [B(6)O(10)(OH)(4)?H(2)O](6-) layer. The 2-D borate layers are thus interconnected by Ln(3+) ions to form the complex three-dimensional structure. Ln(2)B(6)O(10)(OH)(4)?H(2)O dehydrates stepwise, giving rise to two new intermediate compounds Ln(2)B(6)O(10)(OH)(4) and Ln(2)B(6)O(11)(OH)(2). The investigation on the luminescent properties of Gd(2-2x)Eu(2x)B(6)O(10)(OH)(4)?H(2)O (x = 0.01-1.00) shows a high efficiency of Eu(3+) f-f transitions and the existence of the energy transfer process from Gd(3+) to Eu(3+). Eu(2)B(6)O(10)(OH)(4)?H(2)O and its two dehydrated products, Eu(2)B(6)O(10)(OH)(4) and Eu(2)B(6)O(11)(OH)(2), present the strongest emission peak at 620 nm ((5)D(0) → (7)F(2) transition), which may be potential red phosphors.  相似文献   

7.
Wang R  Liu H  Carducci MD  Jin T  Zheng C  Zheng Z 《Inorganic chemistry》2001,40(12):2743-2750
Tetranuclear lanthanide-hydroxo complexes of the general formula [Ln(4)(mu(3)-OH)(4)(AA)(x)(H(2)O)(y)](8+) (1, Ln = Sm, AA = Gly, x = 5, y = 11; 2, Ln = Nd, AA = Ala, x = 6, y = 10; 3, Ln = Er, AA = Val, x = 5, y = 10) have been prepared by alpha-amino acid controlled hydrolysis of lanthanide ions under near physiological pH conditions (pH 6-7). The core component of these compounds is a cationic cluster [Ln(4)(mu(3)-OH)(4)](8+) whose constituent lanthanide ions and triply bridging hydroxo groups occupy the alternate vertexes of a distorted cube. The amino acid ligands coordinate the lanthanide ions via bridging carboxylate groups. Utilizing L-glutamic acid as the supporting ligand, a cationic cluster complex (4) formulated as [Er(4)(mu(3)-OH)(4)(Glu)(3)(H(2)O)(8)](5+) has been obtained. Its extended solid-state structure is composed of the cubane-like [Er(4)(mu(3)-OH)(4)](8+) cluster building units interlinked by the carboxylate groups of the glutamate ligands. All compounds are characterized by using a combination of spectroscopic techniques and microanalysis (CHN and metal). Infrared spectra of the complexes suggest the coordinated amino acids to be zwitterionic. The presence of mass (MALDI-TOF) envelopes corresponding to the [Ln(4)(mu(3)-OH)(4)](8+) (Ln = trivalent Sm, Nd, or Er) core containing fragments manifests the integrity of the cubane-like cluster unit. Magnetic studies using Evans' method suggest that exchange interactions between the lanthanide ions are insignificant at ambient temperature. The structural identities of all four compounds have been established crystallographically. The tetranuclear cluster core has been demonstrated to be a common structural motif in these complexes. A mechanism responsible for its self-assembly is postulated.  相似文献   

8.
Zhang H  Duan L  Lan Y  Wang E  Hu C 《Inorganic chemistry》2003,42(24):8053-8058
Three new compounds [Ln(NMP)(4)(H(2)O)(4)][H(x)()GeMo(12)O(40)].2NMP.3H(2)O (Ln = Ce(IV) (1), Pr(IV) (2), x = 0; Ln = Nd(III) (3), x = 1; NMP = N-methyl-2-pyrrolidone) have been prepared in aqueous solution and characterized by elemental analyses, IR, UV-vis, and TG analyses. The single crystal X-ray diffraction shows that all three compounds are isostructural. In their structures, an interesting two-dimensional supramolecular network is constructed by the [GeMo(12)O(40)](4)(-) anion and [Ln(NMP)(4)(H(2)O)(4)](3+/4+) cation building blocks via hydrogen-bonding interactions, exhibiting the porous structure. Upon irradiation with UV light, the crystals of 1-3 show photochromic behavior.  相似文献   

9.
Two types of novel oxalate-bridging rare-earth-substituted Keggin-type phosphotungstates {[(α-PW(11)O(39)) RE(H(2)O)](2)(C(2)O(4))}(10-) (RE = Y(III) for 1, Dy(III) for 2, Ho(III) for 3 and Er(III) for 4) and {(α-x-PW(10)O(38))Tm(2)(C(2)O(4))(H(2)O)(2)}(3-) for 5 have been synthesized by reaction of [α-PW(11)O(39)](7-) with RE cations and oxalate ligands in aqueous solution. They have been further characterized by elemental analyses, X-ray powder diffraction (XRPD), IR spectra, thermogravimetric (TG) analysis, and single-crystal X-ray diffraction. The common features of 1-4 are that they all contain the dimeric mono-RE substituted Keggin [RE(α-PW(11)O(39))](2)(14-) subunits linked by oxalate ligands whereas 5 exhibits a one-dimensional (1D) chain architecture built by the unusual divacant [α-x-PW(10)O(38)](11-) polyoxoanions and oxalate ligands. Notably, 1-5 represent the first oxalate-bridging dimers constructed by lacunary Keggin phosphotungstate-supported RE derivatives, and the unusual divacant [α-x-PW(10)O(38)](11-) fragment is found for the first time. Furthermore, the room-temperature solid-state photoluminescence of 2 has been investigated. Variable-temperature magnetic susceptibility measurements indicate that 2 and 4 demonstrate weak ferromagnetic couplings within the two adjacent RE cations bridged through oxalate ligands, whereas dominant antiferromagnetic interactions are observed in 3 and 5, respectively.  相似文献   

10.
Li X  Liu W  Guo Z  Tan M 《Inorganic chemistry》2003,42(26):8735-8738
Lanthanide nitrate complexes with the heptadentate ligand L (6-[2-(2-(diethylamino)-2-oxoethoxy)ethyl]-N,N,12-triethyl-11-oxo-3,9-dioxa-6,12-diazatetradecanamide), [Ln(2)L(NO(3))(6)] (Ln = La, Nd, Sm, Eu, Ho), have been prepared and characterized. The X-ray crystallographic studies show that, in [La(2)L(NO(3))(6)(H(2)O)].H(2)O (1), two complex cations [LaL(H(2)O)](3+) are linked by a hexanitrato anion [La(NO(3))(6)](3)(-) and form a trinuclear cation. In [Nd(2)L(NO(3))(6)(H(2)O)].CHCl(3).1/2CH(3)OH.1/2H(2)O (2), one complex cation [NdL(H(2)O)](3+) and a hexanitrato complex anion [Nd(NO(3))(6)](3)(-) are linked by a bridging NO(3)(-) to form a dinuclear complex. In both complexes, the bridging nitrate is an unusual tetradentate ligand. The metal ions are 12-coordinated in hexanitrato anions and 10-coordinated in complex cations. The chainlike supramolecular structures of La(3+) complex are parallel and have no hydrogen bonds in between, while, in the Nd(3+) complex, a chiral cavity is formed by hydrogen bonds between two adjacent supramolecular chains. These influences are further investigated by assessing the separation efficiency of L and (1)H NMR spectra of its lanthanide nitrate mixtures in solution.  相似文献   

11.
Unsolvated, trinuclear, homometallic, rare-earth-metal multimethyl methylidene complexes [{(NCN)Ln(μ(2)-CH(3))}(3)(μ(3)-CH(3))(μ(3)-CH(2))] (NCN = L = [PhC{NC(6)H(4)(iPr-2,6)(2)}(2)](-); Ln = Sc (2a), Lu (2b)) have been synthesized by treatment of [(L)Ln{CH(2)C(6)H(4)N(CH(3))(2)-o}(2)] (Ln = Sc (1a), Lu (1b)) with two equivalents of AlMe(3) in toluene at ambient temperature in good yields. Treatment of 1 with three equivalents of AlMe(3) gives the heterometallic trinuclear complexes [(L)Ln(AlMe(4))(2)] (Ln = Sc (3a), Lu (3b)) in good yields. Interestingly, 2 can also be generated by recrystallization of 3 in THF/toluene, thereby indicating that the THF molecule can also induce C-H bond activation of 2. Reaction of 2 with one equivalent of ketones affords the trinuclear homometallic oxo-trimethyl complexes [{(L)Ln(μ(2) -CH(3))}(3) (μ(3)-CH(3))(μ(3)-O)] (Ln = Sc(4a), Lu(4b)) in high yields. Complex 4b reacts with one equivalent of cyclohexanone to give the methyl abstraction product [{(L)Lu(μ(2) -CH(3) )}(3) (μ(3) -OC(6)H(9))(μ(3)-O)] (5b), whereas reaction of 4b with acetophenone forms the insertion product [{(L)Lu(μ(2)-CH(3))}(3){μ(3)-OCPh(CH(3))(2)}(μ(3)-O)] (6b). Complex 4a is inert to ketone under the same conditions. All these new complexes have been characterized by elemental analysis, NMR spectroscopy, and confirmed by X-ray diffraction determination.  相似文献   

12.
Xin F  Pope MT  Long GJ  Russo U 《Inorganic chemistry》1996,35(5):1207-1213
Eight tris(organotin)-substituted Keggin tungstosilicate heteropolyanions have been synthesized and characterized by elemental analysis, infrared and M?ssbauer spectroscopy, multinuclear NMR, and X-ray crystallography. The new anions contain alpha- or beta-SiW(9)O(34)(10)(-) moieties and are of two structural types, [(RSn)(3)(SiW(9)O(37))](7)(-) (R, isomer: Ph, alpha-, 1; n-Bu, alpha-, 2; Ph, beta-, 3; n-Bu, beta-, 4) and [(RSnOH)(3)(SiW(9)O(34))(2)](14)(-) (Ph, alpha-, 5; n-Bu, alpha-, 6; Ph, beta-, 7; n-Bu, beta-, 8). Crystals of Cs(4)H(3)[(PhSn)(3)(SiW(9)O(37))].8H(2)O (anion 3) are monoclinic, space group C2/c, with lattice constants a = 48.91(2) ?, b = 12.111(3) ?, c = 20.334(9) ?, beta = 102.30 degrees, and Z = 8. The anion has nominal C(3)(v)() symmetry and has a structure with three corner-shared WO(6) octahedra of the beta-Keggin anion replaced by three PhSnO(5) groups. Crystals of Cs(9)H(5)[(BuSnOH)(3)(SiW(9)O(34))(2)].36H(2)O (anion 6) are tetragonal, space group P&fourmacr;2(1)m, with lattice constants a = b = 29.005(4) ?, c = 13.412(4) ?, and Z = 4. The anion has the anticipated D(3)(h)() symmetry and contains three BuSnOH groups sandwiched between A,alpha-SiW(9)O(34)(10)(-) anions.  相似文献   

13.
Six lanthanide(iii)-2,5-dihydroxy-1,4-benzenedicarboxylate frameworks, namely, [Ln(H(2)-DHBDC)(1.5)(H(2)O)(2)](n) (Ln = La (1) and Pr (2); H(4)-DHBDC = 2,5-dihydroxy-1,4-benzenedicarboxylic acid), {[Nd(H(2)-DHBDC)(1.5)(H(2)O)(3)](H(2)O)}(n) (3), {[Eu(H(2)-DHBDC)(NO(3))(H(2)O)(4)](H(2)O)(2)}(n) (4), and {[Ln(2)(H(2)-DHBDC)(2)(DHBDC)(0.5)(H(2)O)(3)](H(2)O)(4)}(n) (Ln = Gd (5) and Dy (6)), with four different structural types ranging from 1D chain, 2D layer to 3D networks have been synthesized and structurally characterized. Compounds La (1) and Pr (2) are isomorphous and exhibit 3D frameworks with the unique 1D tubular channels. Compounds Nd (3) and Eu (4) are 2D layer and 1D zigzag chain, respectively, which are further extended to 3D supramolecular frameworks through extensive hydrogen bonds. Isomorphous compounds of Gd (5) and Dy (6) are 3D frameworks constructed from secondary infinite rod-shaped metal-carboxylate/hydroxyl building blocks. While the hydroxyl groups as secondary functional groups in the 1D chain of Eu (4) and 2D layer of Nd (3) are not bonded to the lanthanide centers, the hydroxyl groups in the 3D frameworks of La (1), Pr (2), Gd (5), and Dy (6) participate in coordinating to lanthanide centers and thus modify the structural types of theses compounds. The magnetic data of compounds Pr (2), Nd (3), Gd (5), and Dy (6) have been investigated in detail. In addition, elemental analysis, IR spectra, powder X-ray diffraction (PXRD) patterns and thermogravimetric analysis of these compounds are described.  相似文献   

14.
Four types of cobalt-lanthanide heterometallic compounds based on metalloligand Co(2,5-pydc)(3) (3-) (2,5-H(2)pydc=pyridine-2,5-dicarboxylate acid), [Ln(2)Co(2)(2,5-pydc)(6)(H(2)O)(4)](n) 2n H(2)O (1) (Ln=Tb, Dy for 1 a, 1 b respectively), [Tb(2)Co(2)(2,5-pydc)(6)(H(2)O)(4)](n)3n H(2)O (2), [Tb(2)Co(2)(2,5-pydc)(6)(H(2)O)(9)](n)4n H(2)O (3), and [LaCo(2,5-pydc)(3)(H(2)O)(2)](n)2n H(2)O (4) have been synthesized. Compound 1 has a layer structure with well-isolated carboxylate-bridged Ln(3+) chains, compound 2 is a three-dimensional (3D) porous network with Tb(3+) chains that are also well isolated and carboxylate bridged, 3 is a layer structure based on dinuclear units, and 4 is a 3D network with boron nitride (BN) topology. DC magnetic studies reveal ferromagnetic coupling in all the carboxylate-bridged Ln(3+) chains in 1 a, 1 b, and 2. Compared to the silence of the out-of-phase ac susceptibility of 2, above 1.9 K the magnetic relaxation behavior of both 1 a and 1 b is slow like that of a single-chain magnet.  相似文献   

15.
A new pathway for the preparation of mono-ruthenium (Ru)(iii)-substituted Keggin-type heteropolytungstates with an aqua ligand, [PW(11)O(39)Ru(iii)(H(2)O)](4-) (1a), [SiW(11)O(39)Ru(iii)(H(2)O)](5-) (1b) and [GeW(11)O(39)Ru(iii)(H(2)O)](5-) (1c), using [Ru(ii)(benzene)Cl(2)](2) as a Ru source was described. Compounds 1a-1c were prepared by reacting [XW(11)O(39)](n-) (X = P, Si and Ge) with [Ru(ii)(benzene)Cl(2)](2) under hydrothermal condition and were isolated as caesium salts. Ru(benzene)-supported heteropolytungstates, [PW(11)O(39){Ru(ii)(benzene)(H(2)O)}](5-) (2a), [SiW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2b) and [GeW(11)O(39){Ru(ii)(benzene)(H(2)O)}](6-) (2c), were first produced in the reaction media, and then transformed to 1a, 1b and 1c, respectively, under hydrothermal conditions. Calcination of Ru(benzene)-supported heteropolytungstates, 2a, 2b and 2c, in the solid state produced mixtures of 1a, 1b and 1c with CO (carbon monoxide)-coordinated complexes, [PW(11)O(39)Ru(ii)(CO)](5-) (4a), [SiW(11)O(39)Ru(ii)(CO)](6-) (4b) and [GeW(11)O(39)Ru(ii)(CO)](6-) (4c), respectively. From comparison of their catalytic activities in water oxidation reaction, it was indicated that ruthenium should be incorporated in the heteropolytungstate in order to promote catalytic activity.  相似文献   

16.
The influence of the nature of alkali metal cations on the structure of the species obtained from the trivacant precursor A-alpha-[SiW(9)O(34)](10-) has been studied. Starting from the potassium salt 1, K(10)A-alpha-[SiW(9)O(34)].24H(2)O, the sandwich-type complex 2, K(10.75)[Co(H(2)O)(6)](0.5)[Co(H(2)O)(4)Cl](0.25)A-alpha-[K(2)(Co(H(2)O)(2))(3)(SiW(9)O(34) )(2)].32H(2)O, has been obtained. The crystal structures of these two compounds consist of two A-alpha-[SiW(9)O(34)](10-) anions linked by a set of potassium (1) or cobalt plus potassium cations (2), and the relative orientation of the two half-anions is the same. Attempts to link two A-alpha-[SiW(9)O(34)](10-) anions by tungsten atoms instead of cobalt failed whatever the alkali metal cation. Moreover, the nondisordered structure of Cs(15)[K(SiW(11)O(39))(2)].39H(2)O is described. Two [SiW(11)O(39)](8-) anions are linked through a potassium cation with a "trans-oid" conformation, and the potassium occupies a cubic coordination site.  相似文献   

17.
New heterospin complexes have been obtained by combining the binuclear complexes [{Cu(H(2)O)L(1)}Ln(O(2)NO)(3)] or [{CuL(2)}Ln(O(2)NO)(3)] (L(1) = N,N'-propylene-di(3-methoxysalicylideneiminato); L(2) = N,N'-ethylene-di(3-methoxysalicylideneiminato); Ln = Gd(3+), Sm(3+), Tb(3+)), with the mononuclear [CuL(1)(2)] and the nickel dithiolene complexes [Ni(mnt)(2)](q)- (q = 1, 2; mnt = maleonitriledithiolate), as follows: (1)infinity[{CuL(1)}(2)Ln(O(2)NO){Ni(mnt)(2)}].Solv.CH(3)CN (Ln = Gd(3+), Solv = CH(3)OH (1), Ln = Sm(3+), Solv = CH(3)CN (2)) and [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)][Ni(mnt)(2)] (3) with [Ni(mnt)2]2-, [{(CH(3)CN)CuL(1)}(2)Ln(H(2)O)][Ni(mnt)(2)]3.2CH(3)CN (Ln = Gd(3+) (4), Sm(3+) (5), Tb(3+) (6)), and [{(CH(3)OH)CuL(2)}{CuL(2)}Gd(O(2)NO){Ni(mnt)(2)}][Ni(mnt)(2)].CH(2)Cl(2) (7) with [Ni(mnt))(2]*-. Trinuclear, almost linear, [CuLnCu] motifs are found in all the compounds. In the isostructural 1 and 2, two trans cyano groups from a [Ni(mnt)2]2- unit bridge two trimetallic nodes through axial coordination to the Cu centers, thus leading to the establishment of infinite chains. 3 is an ionic compound, containing discrete [{(CH(3)OH)CuL(2)}(2)Sm(O(2)NO)](2+) cations and [Ni(mnt)(2)](2-) anions. Within the series 4-6, layers of discrete [CuLnCu](3+) motifs alternate with stacks of interacting [Ni(mnt)(2)](*-) radical anions, for which two overlap modes, providing two different types of stacks, can be disclosed. The strength of the intermolecular interactions between the open-shell species is estimated through extended Hückel calculations. In compound 7, [Ni(mnt)(2)](*-) radical anions coordinate group one of the Cu centers of a trinuclear [Cu(2)Gd] motif through a CN, while discrete [Ni(mnt)(2)](*-) units are also present, overlapping in between, but also with the coordinated ones. Furthermore, the [Cu(2)Gd] moieties dimerize each other upon linkage by two nitrato groups, both acting as chelate toward the gadolinium ion from one unit and monodentate toward a Cu ion from the other unit. The magnetic properties of the gadolinium-containing complexes have been determined. Ferromagnetic exchange interactions within the trinuclear [Cu(2)Gd] motifs occur. In the compounds 4 and 7, the [Ni(mnt)(2)](*-) radical anions contribution to the magnetization is clearly observed in the high-temperature regime, and most of it vanishes upon temperature decrease, very likely because of the rather strong antiferromagnetic exchange interactions between the open-shell species. The extent of the exchange interaction in the compound 7, which was found to be antiferromagnetic, between the coordinated Cu center and the corresponding [Ni(mnt)(2)](*-) radical anion, bearing mostly a 3p spin type, was estimated through CASSCF/CASPT2 calculations. Compound 6 exhibits a slow relaxation of the magnetization.  相似文献   

18.
Han Y  Li X  Li L  Ma C  Shen Z  Song Y  You X 《Inorganic chemistry》2010,49(23):10781-10787
A series of 3-D lanthanide porous coordination polymers, [Ln(6)(BDC)(9)(DMF)(6)(H(2)O)(3)·3DMF](n) [Ln = La, 1; Ce, 2; Nd, 3], [Ln(2)(BDC)(3)(DMF)(2)(H(2)O)(2)](n) [Ln = Y, 4; Dy, 5; Eu, 6], [Ln(2)(ADB)(3)(DMSO)(4)·6DMSO·8H(2)O](n) [Ln = Ce, 7; Sm, 8; Eu, 9; Gd, 10], {[Ce(3)(ADB)(3)(HADB)(3)]·30DMSO·29H(2)O}(n) (11), and [Ce(2)(ADB)(3)(H(2)O)(3)](n) (12) (H(2)BDC = benzene-1,4-dicarboxylic acid and H(2)ADB = 4,4'-azodibenzoic acid), have been synthesized and characterized. In 1-3, the adjacent Ln(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), that constructed a 3-D framework with 4 × 7 ? rhombic channels. In 4-6, the dimeric Ln(III) ions are interlinked to yield scaffolds with 3-D interconnecting tunnels. Compounds 7-10 are all 3-D interpenetrating structures with the CaB6-type topology structure. Compound 11 is constructed by ADB spacers and trinulcear Ce nodes with a NaCl-type topology structure and a 1.9-nm open channel system. In 12, the adjacent Ce(III) ions are intraconnected to form 1-D metal-carboxylate oxygen chain-shaped building units, [Ln(4)(CO(2))(12)](n), and give rise to a 3-D framework. Moreover, 6 exhibits characteristic red luminescence properties of Eu(III) complexes. The magnetic susceptibilities, over a temperature range of 1.8-300 K, of 3, 6, and 7 have also been investigated; the results show paramagnetic properties.  相似文献   

19.
Two new compounds constructed from tetra-Ni-substituted sandwich-type polyoxometalates functionalized by organic groups, (NH(4))(2)[Ni(4)(enMe)(8)(H(2)O)(2)Ni(4)(enMe)(2)(PW(9)O(34))(2)].9H(2)O (enMe = 1,2-diaminopropane) (1) and Na(2)[H(6)N(2)(CH(2))(6)](2){Ni(4)[H(4)N(2)(CH(2))(6)](2)(H(2)PW(9)O(34))(2)}.7H(2)O (2), have been successfully synthesized under hydrothermal conditions. Single-crystal X-ray diffraction analysis is carried out on these two compounds (1 and 2), which both crystallize in the triclinic system. Compound 1 represents the first example of a 2D layer structure consisting of the sandwich-type polyoxoanions with six supporting [Ni(enMe)(2)](2+) moities and two organic functionalized groups. Compound 2 exhibits a 1D chain-like structure based on sandwich-type polyoxoanions and sodium cations, which are further connected into a 2D layer structure via hydrogen-bonding interactions between the 1,6-hexanediamine molecules and the sandwich-type [Ni(4)(H(4)N(2)(CH(2))(6))(2)(H(2)PW(9)O(34))(2)](6-) polyoxoanions. A magnetic study of the two compounds indicates that intramolecular ferromagnetic Ni-Ni interactions exist in the tetranuclear metal cluster.  相似文献   

20.
Several new large polyoxotungstates have been synthesized by reaction of lanthanide cations with the well-known "As(4)W(40)" anion, [(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)](28-) (1). The heteropolyanions [(H(2)O)(11)Ln(III)(Ln(III)(2)OH)(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)](20)(-) (Ln = Ce, Nd, Sm, Gd) (2-4) (Ln(3)As(4)W(40)) and [M(m)()(H(2)O)(10)(Ln(III)(2)OH)(2)(B-alpha-AsO(3)W(9)O(30))(4)(WO(2))(4)]((18-m)(-)) (Ln = La, Ce, Gd and M = Ba, K, none) (5-7) (Ln(4)As(4)W(40)) have been isolated as alkali metal and ammonium salts, respectively, and characterized by single-crystal X-ray analysis, elemental analysis, and IR and (183)W-NMR spectroscopy. The X-ray analyses revealed interanionic W-O-Ln bonds between adjacent Ln(x)()As(4)W(40) units forming a "dimer" for x = 3 and chains for x = 4. Upon dissolving in water these bonds hydrolyze and the monomeric species form. The straightforward syntheses which require the use of concentrated NaCl solutions (1-4 M) and the addition of stoichiometric amounts of Ba(2+) or K(+) reemphasize the importance of the presence of appropriate countercations for the assembly of large polyoxometalate structures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号