首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
The XENON100 experiment, in operation at the Laboratori Nazionali del Gran Sasso in Italy, is designed to search for dark matter weakly interacting massive particles (WIMPs) scattering off 62 kg of liquid xenon in an ultralow background dual-phase time projection chamber. In this Letter, we present first dark matter results from the analysis of 11.17 live days of nonblind data, acquired in October and November 2009. In the selected fiducial target of 40 kg, and within the predefined signal region, we observe no events and hence exclude spin-independent WIMP-nucleon elastic scattering cross sections above 3.4 × 10??? cm2 for 55 GeV/c2 WIMPs at 90% confidence level. Below 20 GeV/c2, this result constrains the interpretation of the CoGeNT and DAMA signals as being due to spin-independent, elastic, light mass WIMP interactions.  相似文献   

2.
The XENON10 experiment at the Gran Sasso National Laboratory uses a 15 kg xenon dual phase time projection chamber to search for dark matter weakly interacting massive particles (WIMPs). The detector measures simultaneously the scintillation and the ionization produced by radiation in pure liquid xenon to discriminate signal from background down to 4.5 keV nuclear-recoil energy. A blind analysis of 58.6 live days of data, acquired between October 6, 2006, and February 14, 2007, and using a fiducial mass of 5.4 kg, excludes previously unexplored parameter space, setting a new 90% C.L. upper limit for the WIMP-nucleon spin-independent cross section of 8.8x10(-44) cm2 for a WIMP mass of 100 GeV/c2, and 4.5x10(-44) cm2 for a WIMP mass of 30 GeV/c2. This result further constrains predictions of supersymmetric models.  相似文献   

3.
XENON10 is an experiment to directly detect weakly interacting massive particles (WIMPs), which may comprise the bulk of the nonbaryonic dark matter in our Universe. We report new results for spin-dependent WIMP-nucleon interactions with 129Xe and 131Xe from 58.6 live days of operation at the Laboratori Nazionali del Gran Sasso. Based on the nonobservation of a WIMP signal in 5.4 kg of fiducial liquid xenon mass, we exclude previously unexplored regions in the theoretically allowed parameter space for neutralinos. We also exclude a heavy Majorana neutrino with a mass in the range of approximately 10 GeV/c2-2 TeV/c2 as a dark matter candidate under standard assumptions for its density and distribution in the galactic halo.  相似文献   

4.
Data from the operation of a bubble chamber filled with 3.5 kg of CF3I in a shallow underground site are reported. An analysis of ultrasound signals accompanying bubble nucleations confirms that alpha decays generate a significantly louder acoustic emission than single nuclear recoils, leading to an efficient background discrimination. Three dark matter candidate events were observed during an effective exposure of 28.1 kg day, consistent with a neutron background. This observation provides strong direct detection constraints on weakly interacting massive particle (WIMP)-proton spin-dependent scattering for WIMP masses >20 GeV/c2.  相似文献   

5.
The EDELWEISS-II experiment is aimed at direct detection of weakly interacting massive particles (WIMP) considered as main candidates for the role of nonbarion dark matter. In the experiment, a search for rare WIMP-Ge scattering events is performed using HPGe-detectors-bolometers at a temperature of 20 mK. Because of different ionization losses of recoil nuclei and electrons, the use of detectors allowing simultaneous measurement of phonon and ionization signals enables background events to be suppressed very efficiently. To suppress actively the remained source of events simulating the WIMP signature, namely, the surface events with incomplete charge collection, detectors with coplanar ring electrodes have been developed for the EDELWEISS-II facility. The experimental coefficient of suppression of all EDELWEISS-II background components with the help of calibration measurements allows 3500 kg⋅day statistics to be accumulated with the expected zero level of the background events in the region of search for the WIMP. This enables the spinindependent WIMP-nucleon scattering events to be registered given that their cross section is greater than 10-45 cm2 (10-9 pb) predicted by a wide class of the SUSY models.  相似文献   

6.
New limits are presented on the cross section for weakly interacting massive particle (WIMP) nucleon scattering in the KIMS CsI(T?) detector array at the Yangyang Underground Laboratory. The exposure used for these results is 24?524.3 kg·days. Nuclei recoiling from WIMP interactions are identified by a pulse shape discrimination method. A low energy background due to alpha emitters on the crystal surfaces is identified and taken into account in the analysis. The detected numbers of nuclear recoils are consistent with zero and 90% confidence level upper limits on the WIMP interaction rates are set for electron equivalent energies from 3 to 11 keV. The 90% upper limit of the nuclear recoil event rate for 3.6-5.8 keV corresponding to 2-4 keV in NaI(T?) is 0.0098 counts/kg/keV/day, which is below the annual modulation amplitude reported by DAMA. This is incompatible with interpretations that enhance the modulation amplitude such as inelastic dark matter models. We establish the most stringent cross section limits on spin-dependent WIMP-proton elastic scattering for the WIMP masses greater than 20 GeV/c2.  相似文献   

7.
We discuss the short-and long-term perspectives of the CRESST (Cryogenic Rare Event Search using Superconducting Thermometers) project and present the current status of the experiment and new results concerning detector development. In the search for elementary particle dark matter, CRESST is presently the most advanced deep underground, low-background, cryogenic facility. The basic technique involved is to search for WIMPs (Weakly Interacting Massive Particles) by the measurement of nonthermal phonons, as created by WIMP-induced nuclear recoils. Combined with our newly developed method for the simultaneous measurement of scintillation light, strong background discrimination is possible, resulting in a substantial increase in WIMP detection sensitivity. This will allow a test of the reported positive evidence for a WIMP signal by the DAMA Collaboration in the near future. In the long term, the present CRESST setup permits the installation of a detector mass up to 100 kg. In contrast to other projects, CRESST technology allows the employment of a large variety of detection materials. This offers a powerful tool in establishing a WIMP signal and in investigating WIMP properties in the event of a positive signal.  相似文献   

8.
RUPAK MAHAPATRA 《Pramana》2012,79(5):1045-1057
Matter, as we know it, makes up less than 5% of the Universe. Various astrophysical observations have confirmed that one quarter of the Universe and most of the matter content in the Universe is made up of dark matter. The nature of dark matter is yet to be discovered and is one of the biggest questions in physics. Particle physics combined with astrophysical measurements of the abundance gives rise to a dark matter candidate called weakly interacting massive particle (WIMP). The low density of WIMPs in the galaxies and the extremely weak nature of the interaction with ordinary matter make detection of the WIMP an extraordinarily challenging task, with abundant fakes from various radioactive and cosmogenic backgrounds with much stronger electromagnetic interaction. The extremely weak nature of the WIMP interaction dictates detectors that have extremely low naturally occurring radioactive background, a large active volume (mass) of sensitive detector material to maximize statistics, a highly efficient detector-based rejection mechanism for the dominant electromagnetic background and sophisticated analysis techniques to reject any residual background. This paper reviews currently available major technologies being pursued by various collaborations, with special emphasis on the cryogenic Ge detector technology used by the Cryogenic Dark Matter Search Collaboration (CDMS).  相似文献   

9.
Weakly Interacting Massive Particles (WIMPs) are among the main candidates for the relic dark matter (DM). The idea of the direct DM detection relies on elastic spin-dependent (SD) and spin-independent (SI) interaction of WIMPs with target nuclei. In this review paper the relevant formulae for WIMP event rate calculations are collected. For estimations of the WIMP-proton and WIMP-neutron SD and SI cross sections the effective low-energy minimal supersymmetric standard model is used. The traditional one-coupling-dominance approach for evaluation of the exclusion curves is described. Further, the mixed spin-scalar coupling approach is discussed. It is demonstrated, taking the high-spin 73Ge dark matter experiment HDMS as an example, how one can drastically improve the sensitivity of the exclusion curves within the mixed spin-scalar coupling approach, as well as due to a new procedure of background subtraction from the measured spectrum. A general discussion on the information obtained from exclusion curves is given. The necessity of clear WIMP direct detection signatures for a solution of the dark matter problem, is pointed out.  相似文献   

10.
We report results of a search for light (?10 GeV) particle dark matter with the XENON10 detector. The event trigger was sensitive to a single electron, with the analysis threshold of 5 electrons corresponding to 1.4 keV nuclear recoil energy. Considering spin-independent dark matter-nucleon scattering, we exclude cross sections σ(n)>7×10(-42) cm(2), for a dark matter particle mass m(χ)=7 GeV. We find that our data strongly constrain recent elastic dark matter interpretations of excess low-energy events observed by CoGeNT and CRESST-II, as well as the DAMA annual modulation signal.  相似文献   

11.
Searches for dark matter scattering off nuclei are typically compared assuming that the dark matter?s spin-independent couplings are identical for protons and neutrons. This assumption is neither innocuous nor well motivated. We consider isospin-violating dark matter (IVDM) with one extra parameter, the ratio of neutron to proton couplings, and include the isotope distribution for each detector. For a single choice of the coupling ratio, the DAMA and CoGeNT signals are consistent with each other and with current XENON constraints, and they unambiguously predict near future signals at XENON and CRESST. We provide a quark-level realization of IVDM as WIMPless dark matter that is consistent with all collider and low-energy bounds.  相似文献   

12.
For the experimental search of neutralino dark matter, it is important to know its allowed mass and scattering cross section with the nucleon. In order to figure out how light a neutralino dark matter can be predicted in low energy supersymmetry, we scan over the parameter space of the NMSSM (next-to-minimal supersymmetric model), assuming all the relevant soft mass parameters to be below TeV scale. We find that in the parameter space allowed by current experiments the neutralino dark matter can be as light as a few GeV and its scattering rate off the nucleon can reach the sensitivity of XENON100 and CoGeNT. As a result, a sizable parameter space is excluded by the current XENON100 and CoGeNT data (the plausible CoGeNT dark matter signal can also be explained). The future 6000 kg-days exposure of XENON100 will further explore (but cannot completely cover) the remained parameter space. Moreover, we find that in such a light dark matter scenario a light CP-even or CP-odd Higgs boson must be present to satisfy the measured dark matter relic density. Consequently, the SM-like Higgs boson hSM may decay predominantly into a pair of light Higgs bosons or a pair of neutralinos so that the conventional decays like hSM→γγ is much suppressed.  相似文献   

13.
We examine the present and future XENON limits on the neutralino dark matter in split supersymmetry (split-SUSY). Through a scan over the parameter space under the current constraints from collider experiments and the WMAP measurement of the dark matter relic density, we find that in the allowed parameter space a large part has been excluded by the present XENON100 limits and a further largish part can be covered by the future exposure (6000 kg day). In case of unobservation of dark matter with such an exposure in the future, the lightest neutralino will remain bino-like and its annihilation is mainly through exchanging the SM-like Higgs boson in order to get the required relic density.  相似文献   

14.
《中国物理C(英文版)》2020,44(12):125001-125001-17
We report the dark matter search results obtained using the full 132 ton·day exposure of the PandaX-II experiment, including all data from March 2016 to August 2018. No significant excess of events is identified above the expected background. Upper limits are set on the spin-independent dark matter-nucleon interactions. The lowest 90% confidence level exclusion on the spin-independent cross section is 2.2 × 10?46 cm2 at a WIMP mass of 30 GeV/c2.  相似文献   

15.
We present a new Germanium Dark Matter Experiment. It consists of two HPGe-Detectors which are run in a unique configuration. The anticoincidence between the two detectors will further reduce the background that we achieve now in the Heidelberg-Moscow-Experiment and will allow to improve WIMP cross section limits to a level comparable to planned cryogenic experiments. This should also allow to test recently claimed positive evidence for dark matter by the DAMA experiment.We show first detector performances from the test period in the Heidelberg Low Level Laboratory and give a preliminary estimation for the background reduction efficiency. The HDMS experiment in being built up now in the Gran Sasso Underground Laboratory and will start taking data by the end of this year.For a substantial improvement of the WIMP-nucleon cross section limits, future dark matter experiments will have to be either massive direction-sensitive detectors or massive ton-scale detectors with almost zero background. A proposal for a high mass (1 ton) Ge experiment with a much further reduced background is the Heidelberg GENIUS experiment. GENIUS will be able to give a WIMP limit of the order 0.02 counts/day/kg and additionally to look for the annual modulation WIMP-signature by using raw data without subtraction.  相似文献   

16.
The inelastic dark matter scenario was proposed to reconcile the DAMA annual modulation with null results from other experiments. In this scenario, weakly interacting massive particles (WIMPs) scatter into an excited state, split from the ground state by an energy δ comparable to the available kinetic energy of a galactic WIMP. We note that for large splittings δ the dominant scattering at DAMA can occur off of thallium nuclei, with A~205, which are present as a dopant at the 10(-3) level in NaI(Tl) crystals. For a WIMP mass mχ≈100 GeV/c2 and δ≈200 keV, we find a region in δ-mχ-parameter space which is consistent with all experiments. These parameters, in particular, can be probed in experiments with thallium in their targets, such as KIMS, but are inaccessible to lighter target experiments. Depending on the tail of the WIMP velocity distribution, a highly modulated signal may or may not appear at CRESST-II.  相似文献   

17.
We make frequentist analyses of the CMSSM, NUHM1, VCMSSM and mSUGRA parameter spaces taking into account all the public results of searches for supersymmetry using data from the 2010 LHC run and the XENON100 direct search for dark matter scattering. The LHC data set includes ATLAS and CMS searches for $\mathrm{jets} + {\not}E_{T}$ events (with or without leptons) and for the heavier MSSM Higgs bosons, and the upper limit on BR(B s μ + μ ?) including data from LHCb as well as CDF and DØ. The absence of signals in the LHC data favours somewhat heavier mass spectra than in our previous analyses of the CMSSM, NUHM1 and VCMSSM, and somewhat smaller dark matter scattering cross sections, all close to or within the pre-LHC 68% CL ranges, but does not impact significantly the favoured regions of the mSUGRA parameter space. We also discuss the impact of the XENON100 constraint on spin-independent dark matter scattering, stressing the importance of taking into account the uncertainty in the π-nucleon σ term Σ πN , which affects the spin-independent scattering matrix element, and we make predictions for spin-dependent dark matter scattering. Finally, we discuss briefly the potential impact of the updated predictions for sparticle masses in the CMSSM, NUHM1, VCMSSM and mSUGRA on future e + e ? colliders.  相似文献   

18.
PandaX是位于四川的中国锦屏地下实验室(CJPL)内的,利用氙作为工作物质,探测暗物质等其它极稀有事件的大型地下粒子探测实验计划。PandaX探测器中的氙工作在气液两相的模式。通过检测液相和气相中闪烁光强的比例,实现对目标粒子包括WIMP和Axion等疑似信号的鉴别。PandaX已顺利完成了有效区体积约为120 kg氙的一期计划,目前正在运行实施有效区体积约为500 kg氙的二期计划。在WIMP质量为45 GeV/c2附近,探测灵敏度达2.97×10-45 cm2(90%置信度),没有发现WIMP疑似信号。本工作介绍了PandaX一期和二期的进展,以及后续升级计划,其中包括升级PandaX的时间投影室至4吨,建造用于屏蔽岩石放射性本底的水屏蔽,以及136Xe双贝塔衰变的研究计划等。PandaX is a xenon-based dark matter and other rare events searching project located at China JinPing underground Laboratory (CJPL), Sichuan province, China. Dual phases, liquid and gas phase of xenon are used in the detector. Particles, including Weak Interaction Massive Particles (WIMPs) or axions etc., may induce scintillating signals in both liquid (S1 signal) and gas (S2 signal) phases, and then are identified by analyzing the ratio of S1 and S2. The PandaX had completed its first stage, the 120 kg in fiducial volume, and now is running in its stage Ⅱ with fiducial volume of 500 kg. The running results show that the WIMP-matter cross section detecting sensitivity of about 2.97×10-45 cm2(90% C.L.) has been achieved at a WIMP mass of 44.7 GeV/c2, and no WIMP candidates are identified. The upgrading plan of the PandaX is discussed, which include to build a larger Time project chamber (TPC) of about 4 tons, a water tank for radiation shielding, and the plan of 136Xe double beta decay studies.  相似文献   

19.
The direct limit of electric dipole moment and direct searches for dark matter by electric dipole interaction are investigated with including the electromagnetic nuclear form factor, in case that the dark matter candidate is a Dirac particle. The electric dipole moment of dark matter constrained by direct searches must be lower than 7×10−22e cm for dark matter mass of 100 GeV to satisfy the current experimental exclusion limits at XENON10 and CDMS II. The CP violation of electric dipole moment and the dark matter discovery by electric dipole interaction in the future are considered.  相似文献   

20.
DEAP-3600 is a single-phase liquid-argon dark matter detector that at time of writing is cooling down in preparation for filling at the SNOLAB facility near Sudbury, Ontario, Canada. DEAP-3600 is designed and constructed to achieve a sensitivity of 10?46cm2 for a WIMP-nucleon cross section for a 100 GeV WIMP. The steps taken in design and construction to achieve the ultra-low backgrounds required for such a sensitive WIMP search are reviewed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号