首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We analyzed stress and heat transfer in attached planar waveguides. Die attaching adhesives were known to be the key to avoiding stress buildup in and dissipating heat from waveguides. When adhesives have a shear modulus of less than 1 MPa and a thermal conductivity of 2 w/mk, a 0.1-0.2-mm-thick layer of adhesive can eliminate stress-related effects and efficiently dissipate 30-50 mW/mm2 of heat, even if aluminum is used as a substrate. Supersoft thermal conductive adhesives were thus developed and used to attach 60-mm-long AWG dies to aluminum with excellent results.  相似文献   

2.
The influencing factors of acoustic streaming in thermoacoustic waveguides with slowly varying cross-section are analyzed based on theoretical analysis and numerical simulation. The distribution curves of acoustic streaming velocity in waveguides with different characteristic scales are presented in several specific cases.The results show that appropriate forms of varying cross-section can strengthen or weaken acoustic streaming for specific acoustic fields and the thermophysical parameters have no effect on this part.In addition,the influence of time-average temperature distribution on acoustic streaming is substantial in tubes with a width of the order of the thermal penetration depth.Without time-average temperature distribution,the effect of heat conduction on acoustic streaming is great in tubes whose width is an order of about 10 to 20 times the viscous penetration depth.  相似文献   

3.
Analysis of temperature profiles of thermo-optic waveguides   总被引:1,自引:0,他引:1  
The temperature profiles of thermo-optic waveguides are analyzed by the finite element method. The heat generated by a thin-film heater causes the temperature of a nearby waveguide to increase. The analysis results show that thermal coupling is a function of the waveguide spacing and depth. Thermal coupling increases with the waveguide depth but decreases with the waveguide spacing. Thermal coupling could be reduced by placing a cooler on the adjacent waveguide or etching a deep trench between the waveguides. The cooler can reduce the coupling, but it is not effective for deep waveguides. For the trenched structure, the temperature of the heated waveguide increases as the trench depth increases; however, the temperature of the nearby waveguide will decrease.  相似文献   

4.
Rate of energy transfer between a small body and a sample by means of the fluctuating electromagnetic fields is studied analytically and numerically. The obtained formula for the rate of heat liberation is valid for the case of arbitrary shapes of interacting bodies. A nonmonotonic behavior of the rate of heat transfer due to the temperature dependence of dielectric function is shown for the first time. Shifts of the Froehlich and Coulomb peaks at the curve of spectral power density of the rate of heat transfer are studied using various models of the local and nonlocal response functions.  相似文献   

5.
范瑜晛  刘克  杨军 《声学学报》2012,37(2):113-122
通过理论分析和数值仿真,对渐变截面热声波导管内声流各影响因素进行了具体的分析,并给出了不同情形下波导管内的声流速度分布特性曲线。研究表明,热物理参数对渐变截面导致的声流变化无影响,针对具体的声场设计合适的截面变化形式可以使得管内声流在整体上得到一定程度的抑制或加强。此外,当波导管截面尺度与热穿透深度同数量级时,轴向时均温度分布对声流的影响十分显著。当不存在非零时均温度梯度时,热传导效应对声流的影响在管截面尺度为黏性穿透深度约10至20倍量级时最大。   相似文献   

6.
A multi-beam module using optical waveguides has been studied for a laser scanning optical system. Laser diodes with a wavelength of 780 nm are assembled on a silicon substrate. The beams emitted from the laser diodes are directly coupled into waveguides. This multi-beam module is assembled on a metal substrate with a photodiode. The photodiode controls the power of each laser diode on the silicon substrate. The multi-beam module is able to increase the output speed of high-density image printings, and the speed for high-speed color printings. We have developed the four-beam module with beam divergence angles of 11 degrees and spatial beam interval of 24 μm. Additional heat sink and optimizing tip-bonding between the laser diode and solder pad on the silicon substrate is useful to stabilize laser power against rising temperature.  相似文献   

7.
Guiding of a one-dimensional optical beam with nanometer diameter   总被引:3,自引:0,他引:3  
The concept of a one-dimensional optical wave and its waveguides are proposed for what is to our knowledge the first time. The proposed waveguides are principally new and named for one-dimensional optical waveguides. One-dimensional optical waveguides make it possible to guide very thin optical beams in the visible or the near-infrared region with a diameter in the nanometer range. The propagation properties are analyzed theoretically. The applications of the waveguides to optical devices in the nanometer range are discussed.  相似文献   

8.
The current-induced transition between the normal and the superconducting state of Sn, In, and Pb films is investigated by varying the helium bath temperature, film thickness, mean free path, and an external magnetic field oriented parallel to the film surface. The experiments show that, farther fromT c , heating effects play an important role. The heating of the films relative to the helium bath by the liberation of Joule heat in the resistive state and the influence of hotspot formation on the step structures in the current-voltage characteristics of the samples are established with a graphite thermometer. the temperature and the size of the hotspots are determined by the power dissipation, the surface heat transfer, and the heat conduction within the film.  相似文献   

9.
We compare coupling between parallel waveguides within one-dimensional photonic crystals and coupling between conventional waveguides. We consider the situation in which coupling between the waveguides is minimized, so that light in the waveguides propagates essentially independently. Subject to this condition, we compare the minimum mutual distance between conventional planar waveguides and waveguides in one-dimensional photonic crystals. We find that the packing densities of the conventional and periodic structures are comparable.  相似文献   

10.
Surface plasmon propagating modes supported by metal/dielectric interfaces in various configurations can be used for radiation guiding similarly to conventional dielectric waveguides. Plasmonic waveguides offer two attractive features: subdiffraction mode confinement and the presence of conducting elements at the mode‐field maximum. The first feature can be exploited to realize ultrahigh density of nanophotonics components, whereas the second feature enables the development of dynamic components controlling the plasmon propagation with ultralow signals, minimizing heat dissipation in switching elements. While the first feature is yet to be brought close to the domain of practical applications because of high propagation losses, the second one is already being investigated for bringing down power requirements in optical communication systems. In this review, the latest application‐oriented research on radiation modulation and routing using thermo‐optic dielectric‐loaded plasmonic waveguide components integrated with silicon‐based photonic waveguides is overviewed. Their employment under conditions of real telecommunications is addressed, highlighting challenges and perspectives.  相似文献   

11.
Theoretical and experimental studies have been made on excitation dependent transmission properties of various hollow waveguides at 10.6 μm. A heat problem of the waveguide has been experimentally treated when high powered CO2 laser light is launched.  相似文献   

12.
13.
Renner H 《Optics letters》1998,23(2):111-113
The UV-induced refractive-index increase in photosensitive planar waveguides is modeled by an exponential profile. Closed-form field solutions are given and dispersion curves are calculated for TE and TM modes. Modes in air-covered waveguides can be less sensitive to the UV-written profile than modes in buried waveguides.  相似文献   

14.
Integrated optic directional couplers consisting of curved waveguides are simulated analytically by solving the Riccati equation. The coupling coefficient between the curved waveguides with a parabolically varying gap and the condition of total power transfer between the waveguides are derived. In order to compute the overall coupling coefficient and hence the power distribution along the waveguides for Ti:LiNbO3 curved waveguide directional couplers, the coupling coefficient for straight waveguide couplers is computed for different gaps using the effective-index-based matrix method (EIMM). Finally, the power distribution in the curved waveguides along the length is computed. The method is mostly analytical except the effective-index method and is computationally simple.  相似文献   

15.
A spectral analysis is performed of fluctuations in the liberation of heat in the pre-melting regime of Cu, Sb, Ge, and KCl. It is shown for the first time that the observed thermal fluctuations can be identified as two-level thermal flicker noise. Characteristic parameters of the thermal fluctuations of transitional processes in the melting of crystalline materials are introduced. Fiz. Tverd. Tela (St. Petersburg) 41, 1679–1682 (September 1999)  相似文献   

16.
The propagation of the HE11 mode and Gaussian beams in hollow oversized circular waveguides is analyzed using optical theories. Different types of waveguides are considered : hollow dielectric or conducting waveguides, dielectric-lined waveguides, corrugated waveguides. General formulas are derived which give the power transmission through these different guides. The best wall materials and structures are determined from a comparison of the waveguide transmissions, at the infrared and millimeter wavelengths. The question of the coupling between the HE11 mode and Gaussian beams is discussed and from a review of coupling coefficients derived before, an optimum value is pointed out. The problem of matching a Gaussian beam into circular waveguides in order to achieve the maximum power transmission is analyzed. These results are of interest for infrared lasers or waveguide applications and for Electron Cyclotron Wave (ECW) systems at the millimeter wavelength.  相似文献   

17.
Hybrid plasmonic waveguides based on a surface oxidized dielectric nanowire placed on a metal surface can facilitate simultaneously deep subwavelength mode confinement and large propagation length. Directional coupling based on such waveguides are theoretically investigated. Much lower crosstalk is noticed for such hybrid plasmonic waveguides compared to conventional waveguides based on bare dielectric nanowires. Some modifications, such as vertically placing the metal surfaces or using a metallic block between the nanowires, are studied which can further reduce the crosstalk between two waveguides. The proposed low crosstalk structures based on hybrid plasmonic waveguides can provide a simple platform for plasmonic integration which can at the same time easily interface with traditional photonic circuits.  相似文献   

18.
A rigorous analysis and design of efficient coupling from photonic crystal (PhC) waveguides into conventional dielectric waveguides is reported. Closed-form expressions for the reflection and transmission matrices that completely characterize the scattering that occurs at the interface are derived based on an eigenmode expansion technique and a Bloch basis. Analytic expressions are used to analyze the reflection into PhC waveguides. We obtain that negligible reflection can be achieved by choosing a certain interface within a PhC unit cell. Furthermore, analytic expressions are used to design a novel and compact coupler structure in order to achieve high coupling efficiency when broad dielectric waveguides are considered. Thereby, transmission efficiencies near 100 from the fundamental guided Bloch mode into the fundamental waveguide mode are achieved.  相似文献   

19.
阵列波导光栅的平坦化在实际应用中有很重要的意义.本文系统地研究了阵列波导光栅的平坦化.在输入波导、输出波导、阵列波导输入端与输出端上分别引入了指数型锥形波导.通过改变锥形波导的形状和尺寸来实现平坦化的优化.本文首先从理论上论述了引入指数型锥形波导的输出光谱特性,给出了结构参量的关系表达式,阐明了输入波导处的锥形波导是影响输出光谱平坦化的主要因素,阵列波导和输出波导处的锥形波导对输出光谱的平坦化有一定的影响.其次采用数值模拟的方法模拟了输出光谱,优化了结构参量,总结出了指数型锥形波导对平坦化影响的趋势和规律.模拟结果显示,输出光谱1 dB带宽大于通道间隔的50%,插入损耗从5.2 dB减小到了4.0 dB,串扰小于-30 dB.最后,本文给出了实验结果,插入损耗减小了0.87 dB,串扰减小了3.67 dB,1 dB带宽增加0.1 nm,增加了54.7%.实验结果表明引入指数型锥形波导提高了阵列波导光栅器件的光谱性能.  相似文献   

20.
王文敏  刘文  马卫东 《光子学报》2014,40(8):1137-1142
随着AWG型器件在光通信系统中的大规模应用,对低成本AWG芯片的需求越来越多。在各种降成本方案中,减小AWG芯片的尺寸是最有效的方法之一。本文介绍了一种新型小尺寸低折射率差硅基二氧化硅阵列波导光栅(AWG)的设计。在该AWG中,输入波导/输出波导与平板波导连接的部分制作成两侧为空气槽的高折射率差波导,所以在与输出平板波导连接处的相邻输出波导间距较小,这样可以在设计上缩短平板波导的长度、减少阵列波导的数量,实现较小的AWG芯片尺寸。该AWG的其它部分,如输入/输出波导与光纤耦合的部分、阵列波导光栅等均采用常规的低折射率波导工艺,所以就同时具有与常规的低折射率波导AWG相同的优点:如低耦合损耗、较好的串扰以及光学特性等。根据这个原理,设计了一种40通道100 GHz频率间隔的低折射率差硅基二氧化硅AWG,其芯片尺寸只有23.88 mm?10.5 mm,是传统相同材料制作的AWG尺寸的1/6。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号