首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The kinetics of fracture and deformation of the standard aluminum alloy AD1 and a similar alloy subjected to severe plastic deformation by high-pressure torsion under conditions of high-speed erosion has been investigated. It has been shown that, with an increase in the loading rate, the fraction of the brittle component on the fracture surface of the standard material, as well as the thickness of the damaged layer, increases more significantly than that for the material after the severe plastic deformation by high-pressure torsion. A relationship of the surface roughness of the material after the erosion with the loading rate and the thickness of the erosion-damaged layer has been established.  相似文献   

2.
A new effect has been discovered, which is observed during the dynamic fracture of some construction materials; the essence of this effect is that the pulse calculated using a transmitted signal measured in a Hopkinson–Kol’skii armature bar is nearly independent of the velocity of a striker. It has also been found that there is a threshold velocity upon achieving which the difference between the loading pulse of the system and the sum of the pulses of the transmitted and reflected signals changes. The dynamic-strength parameters of the materials under testing have been estimated using a new method of digital signal processing to filter and analyze the experimental data as an interrelated triad consisting of loading, reflected, and transmitted pulses with account for the physical processes that occur in the given material.  相似文献   

3.
This paper reports on the results of measurements of changes in the temperature of a solid under the adiabatic elastic loading (thermoelastic effect), the coefficient of thermal expansion, and the Young’s modulus of a rigid-chain vitrified polymer, namely, polyimide. It has been found that there are differences in the sign and magnitude of the changes in the energy of thermal origin in samples and the work of the external force. The energy of the thermoelastic effect has been explained in terms of the influence exerted by the anharmonic expansion of a solid, with the separation of the quasi-static potential and dynamic components of the thermal energy of the solid. The loading with an external force causes a redistribution of the thermal energy. A change in the temperature of the solid corresponds to a change in the dynamic component. An energy analysis of the adiabatically loaded anharmonic oscillator has confirmed the conclusion regarding the mechanism of energy transfer and revealed that, under loading, there is a redistribution of the kinetic and potential components of the internal energy of the oscillator.  相似文献   

4.
The combined effect of the loading angle (ψ) and the in-plane orientation angle (β) on the dynamic enhancement of aluminium alloy honeycombs is investigated. Experimental results are analysed on the crushing surfaces (initial peak and average crushing forces). A significant effect of the loading angle is reported. The dynamic enhancement rate depends on the loading angle until a critical loading angle (ψcritical). Beyond, a negative dynamic enhancement rate is observed. Concerning the in-plane orientation angle β effect, it depends on the loading angle ψ under quasi-static conditions. Under dynamic conditions, a significant effect is reported independently of the loading angle ψ. Therefore, the dynamic enhancement rate depends on the combined effects of ψ and β angles. A global analysis of the buckling mechanisms allowed us to explain the combined effect of ψ and β angles on the initial peak force. The collapse mechanisms analysis explain the negative dynamic enhancement rate for large loading angles.  相似文献   

5.
For the study of elastodynamic problems of propagating cracks it is necessary to evaluate the dynamic stress intensity factor KdI which depends on the form of expressions for the stress components existing at the running crack tip at any instant of the propagation of the crack and the corresponding dynamic mechanical and optical properties of the material of the specimen under identical loading conditions. In this paper the distortion of the form of the corresponding reflected caustic from the lateral faces of a dynamically loaded transparent and optically inert specimen containing a transverse crack running under constant velocity was studied on the basis of complex potential elasticity theory and the influence of this form on the value of the dynamic stress intensity factor was given. The method was applied to the study of a propagating Mode I crack in a PMMA specimen under various propagation velocities and the corresponding dynamic stress intensity factor KdI evaluated. Also, crack propagation behaviour of notched composites in dynamic loading modes are reviewed and evaluated. A relatively large data base using metal-epoxy particulates, rubber-toughened poly(methyl methacrylate), and Sandwich plates are given. In all cases, a combination of high-speed photography and the optical method of dynamic caustics has been used. Results on the dynamic crack propagation mode, fracture toughness and crack propagation velocities of several rubber-modified composite models are presented. The composite models studied include specimens with one and/or two ‘complex’ two-stage inclusions, i.e. PMMA round inclusions surrounded by concentric rubber rings, one and/or press-fifting inclusions without rubber interface, all under dynamic loading. In all cases both qualitative and quantitative results were obtained. Also, results on crack propagation mode, crack propagation velocity, stress intensity factors and on the influence of the sandwich phases on crack propagation mode are presented.  相似文献   

6.
The paper is devoted to the data analysis on the amplitude-time regularities of the dynamic failure process of solids under various types of high-intensity impact in the ranges of nonequilibrium states from 3 × 10?10 to 10?5 s and establishing general regularities of behavior of unstudied materials under extreme conditions. We have analyzed the process of dynamic destruction of solids of different nature using the method of magnetic-pulse loading in the microsecond range of nonequilibrium states, as well as the dynamic failure process for a number of metals in the mode of pulsed volume heating under the action of pulsed relativistic electron beams in the nanosecond and subnanosecond range of nonequilibrium states. It has been shown that, upon using different methods of pulsed loading in the dynamic longevity range, the failure time as a function of amplitude of applied load has an exponential form for various solid materials. This indicates the scaling nature of the destruction process. The foregoing determines the possibility of predicting the behavior of unstudied solid bodies in the dynamic range of nonequilibrium states.  相似文献   

7.
This paper applies the method of Harmonic Balance to analytically predict the existence, stability, and influence of parameter variations on the intrawell and interwell oscillations of bistable piezoelectric inertial generator. Existing work on the bistable piezoelectric harvester in the presence of varying harmonic environmental loading has been relegated to simulation and experimental analyses. Furthermore, linear piezoelectric behavior and linear damping has always been presumed. This paper improves upon an existing model for the bistable piezoelectric harvester by incorporating nonlinear dissipation and cubic softening influences in the electroelastic laminates before applying analytical methods. A framework for theoretically predicting empirical observations, such as optimal impedance loads for steady-state motions, is provided as well as other dynamic considerations such as potential well escape phenomena.  相似文献   

8.
The erosion occurring in thoriated tungsten cathodes used in transferred plasma torches operating with current intensities ranging from 30 to 210 A has been experimentally investigated. The cathode erosion rate was determined by measuring the cathode's weight loss after arcing, and the eroded cathode surface was explored by a scanning electron microscope and an energy dispersive X-ray spectrometer. It has been discovered that a critical current intensity, ICR ~ 50 A, exists for which the cathode erosion rate becomes maximum  相似文献   

9.
A new expression for the Stark profiles of spectral lines in plasma has been obtained by the method of the kinetic equation taking into account the dynamics of the plasma microfield. The result represents a dynamic line profile in the form of simple functionals of a static profile. The relation of the new solution with the known fluctuating-frequency method has been analyzed. It has been shown that this method is a discrete analog of the method of the kinetic equation and passes to the latter method in the limit of the continuous fluctuations. Simple formulas (4), (5), and (21) for dynamic line profiles provide ultrafast calculations of the profiles of spectral lines taking into account the dynamics of the plasma microfield.  相似文献   

10.
The behavior of the Ti51.1Ni48.9 and Ti49.4Ni50.6 alloys with shape memory effects has been studied under submicrosecond shock wave loading in the temperature range from −80 to 160°C, which includes both the regions of the stable state of the specimens in the austenite and martensite phases and the regions of thermoelastic martensitic transformations. The grain size of the studied alloys varies from initial values 15–30 to 0.05–0.30 μm. The dependences of the dynamic elastic limit on the temperature and on the elemental composition are similar to the dependences of the yield stress of these alloys under low strain rate loading. The rarefaction shock wave formation as a consequence of the pseudoelastic behavior of the alloy during a reversible martensitic transformation has been revealed. A decrease in the grain size leads to an increase in the dynamic elastic limit and decreases the temperatures of martensitic transformations.  相似文献   

11.
This paper is concerned with the effect of structural loading on dynamic performance. This topic is recognised as being of importance when validating finite element (FE) models with experimental data. A strategy for including axial load effects in a model updating procedure is developed. The method can be used to identify loading in structural frameworks using measured dynamic data.The effectiveness of the new method is demonstrated by means of case studies involving both simulated and experimental data. The theoretical study allows aspects of the sensitivity of the method to realistic levels of experimental noise to be studied as well as the way in which dynamic load identification can be enhanced with static measurements. The experimental case study proves the practical success of the technique. Updated axial load parameters are compared with static measurements of the same quantities.  相似文献   

12.
针对路网中的动态交通分配问题,采用高阶守恒模型(CHO)进行建模与数值研究,并推广高阶守恒模型二进二出路口的Riemann问题;同时将高阶守恒模型与动态网络加载(DNL)模型相结合,通过变分不等式对动态网络加载模型进行分析.数值模拟采用一阶有限体积法求解高阶守恒模型,同时采用梯度下降方法迭代求解动态网络加载模型的变分不等式问题,最终以动态用户最优条件为目标实现分配均衡.数值结果表明CHO模型与DNL模型结合解决动态交通分配问题是可行的,对传统模型的研究有一定的指导意义.  相似文献   

13.
The erosion rate has been measured for capillary-type and needle-type liquid-metal cathodes. The erosion drop fraction composition and percentage have been determined. For the needle-type liquid-metal cathodes, the erosion of the core has been discovered and investigated. To describe this erosion, a simple analytical model has been proposed  相似文献   

14.
岩石Hopkinson层裂的流形元法模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
 利用二阶流形元法,通过引入裂纹产生及扩展判据,对冲击载荷作用下岩石Hopkinson动态层裂过程进行了数值模拟,再现了拉伸波作用下Hopkinson层裂过程,计算得到的层裂片厚度和速度等与理论值符合较好,验证了流形元法在模拟冲击载荷作用下材料动态破坏过程方面的有效性和优越性。  相似文献   

15.
Ultrasonic oxidation desulfurization (UODS) has been considered a promising method for deeply desulfurization technology since it can be carried out using mild conditions. During the last few decades many experimental investigations have been carried out on optimizing the reaction condition such as ultrasonic irradiation time, oxidizing reagents amount, kind of organic acid and so on. But limited work has been reported on the influence of the ultrasonic cavitation field distribution. In this work, the relative intensity of the cavitation events has been measured with the aluminum foil erosion method in a commonly used ultrasonic cleaning vessel both in horizontal and vertical directions. The aluminum foil erosion image was then collected into computer by a scanner. In addition, the image processing program of MATLAB software was used to pretreat the erosion image and find out the positions of the erosion points so that the ratio of the erosion area to the entire area can be calculated which helped to quantify the measurement result since the erosion ratios was the representation of the cavitation intensity. The desulfurization efficiency was then measured in different position of the vessel. The results match well with the cavitation field distribution results which indicate that the cavitation field distribution can be used to guide the UODS process.  相似文献   

16.
A two-level approach has been proposed for describing the plastic deformation under high-rate loading of metals. The characteristics of the motion of dislocations under shear stresses have been investigated at the atomistic level by using the molecular dynamics simulation. The macroscopic motion of a material has been described at the continuum level with the use of the model of continuum mechanics with dislocations, which uses information obtained at the atomistic level on the dislocation dynamics. The proposed approach has been used to study the evolution of the dislocation subsystem under shock-wave loading of an aluminum target. The behavior of the dynamic yield stress with an increase in the temperature has been analyzed. The results of the calculations are in good agreement with experimental data.  相似文献   

17.
Cavitation damage is a micro, high-speed, multi-phase complex phenomenon caused by the near-wall bubble group collapse. The current numerical simulation method of cavitation mainly focuses on the collapse impact of a single cavitation bubble. The large-scale simulation of the cavitation bubble group collapse is difficult to perform and has not been studied, to the best of our knowledge. In this study, the equivalent model of impact loading of acoustic bubble collapse micro-jets is proposed to study the cavitation erosion damage of materials. Based on the theory of the micro-jet and the water hammer effect of the liquid–solid impact, an equivalent model of impact loading of a single acoustic bubble collapse micro-jet is established under the principle of deformation equivalence. Since the acoustic bubbles can be considered uniformly distributed in a small enough area, an equivalent model of impact loading of multiple acoustic bubble collapse micro-jets in a micro-segment can be derived based on the equivalent results of impact loading of a single acoustic bubble collapse micro-jet. In fact, the equivalent methods of cavitation damage loading for single and multiple near-wall acoustic bubble collapse micro-jets are formed. The verification results show the law of cavitation deformation of concrete using equivalent loading is consistent with that of a micro-jet simulation, and the average relative errors and the mean square errors are insignificant. The equivalent method of impact loading proposed in this paper has high accuracy and can greatly improve the calculation efficiency, which provides technical support for numerical simulation of concrete cavitation.  相似文献   

18.
Afanasiev  A. E.  Bykova  D. V.  Skakunenko  P. I.  Balykin  V. I. 《JETP Letters》2022,115(9):509-517
JETP Letters - A method has been proposed to increase the rate of loading of atoms in a U-magneto-optical trap near an atom chip. The method is based on the focusing of a slow atomic beam into the...  相似文献   

19.
In the present work, an experimental method named “the rocking spalling test” is proposed to investigate the crack-propagation velocity in concrete and rock-like materials under dynamic tensile loading. This method is based on the use of double-notched specimens loaded in spalling tests. A compressive pulse is transmitted to a rectangular specimen by means of a Hopkinson bar. It is reflected as a tensile wave on the opposite free surface of the sample. A large notch provides a rocking effect of the rear part of the specimen whereas a short notch is used to trigger a single unstable crack. This experimental configuration has been optimized through a series of numerical simulations. Finally, a series of tests have been conducted on dry and wet concrete specimens. Crack gauges and ultra-high speed camera coupled to Digital Image Correlation have been used to characterize the crack speed in dry and wet concrete samples.  相似文献   

20.
Following Flügge's exact derivation for the buckling of cylindrical shells, the equations of motion for transient dynamic loading of orthotropic circular cylindrical shells under external hydrostatic pressure have been formulated. The normal mode theory is used to provide transient dynamic response for the equations of motion. The effect of shell's parameters, external hydrostatic pressure and material properties on the shell response has been studied in detail. A part of tables and figures are given in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号