首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
A single subcooled jet of water which undergoes boiling upon impingement on a discrete heat source is studied experimentally using time-resolved stereo particle image velocimetry (PIV). The impinging jet issues from a 3.75 mm diameter sharp-edged orifice in a confining orifice plate positioned 4 orifice diameters from the target surface. The behavior at jet Reynolds numbers of 5,000 and 15,000 is compared for a constant jet inlet subcooling of 10 °C. Fluorescent illumination allows for simultaneous imaging of both the flow tracers and the vapor bubbles in the flow. Flow structure, time-averaged velocities, and turbulence statistics are reported for the liquid regions within the confinement gap for a range of heat inputs at both Reynolds numbers, and the effect of the vapor generation on the flow is discussed. Vapor generation from boiling is found to modify the liquid velocities and turbulence fluctuations in the confinement gap. Flow in the confinement gap is dominated by vapor flow, and the vapor bubbles disrupt both the vertical impinging jet and horizontal wall jet flow. Moreover, vapor bubbles are a significant source of turbulence kinetic energy and dissipation, with the bubbly regions above the heated surface experiencing the most intense turbulence modification. Spectral analysis indicates that a Strouhal number of 0.023 is characteristic of the interaction between bubbles and turbulent liquid jets.  相似文献   

2.
An experimental study of heat transfer during quenching of a cylindrical stainless steel test specimen has been performed. A subcooled water jet is directed onto the upward facing flat face of the cylinder. The test specimen is heated to an initial temperature slightly above 900 °C and then quenched. The resulting boiling curves and heat transfer distributions are presented for impingement velocities of 2.85 and 6.4 m/s (Re = 7900 and 18,900). High-speed imaging shows that three distinct regions on the quenched surface can be identified: an expanding circular wetted region surrounding the impinging point, annular transition zone just outside the wetting front, and a unwetted region outside this zone. The free-surface of the liquid in the wetted region is smooth in the nucleate and transition boiling regimes. The annular transition zone or the wetting front region outside the wetted region is characterized by a highly disturbed liquid-gas interface, which can be attributed to intense vapor generation. At the outer edge of the transition zone, the liquid is deflected away from the surface. The velocity of the wetting front significantly increases with the jet impact velocity, which indicates that the wetting front position is governed by the ability of the flowing liquid to transport the bubbles radially outwards from the wetted region.  相似文献   

3.
Experiments were performed to study the spatio-temporal temperature variation underneath growing bubbles on a thin platinum heating foil in saturated and subcooled nucleate pool boiling of water at atmospheric pressure. The transient wall temperature distributions were recorded with spatial resolution of 40 μm by a high-speed infrared camera at intervals of 1 ms, synchronised with a high-speed video camera to record bubble motion. Examples are presented of the transient distributions of wall temperature, heat flux and heat transfer coefficient underneath bubbles growing with the fast and slow bubble detachment mechanisms in saturated and subcooled pool boiling. Comments are made on the evidence for and against particular mechanisms of heat transfer.  相似文献   

4.
Critical heat flux (CHF) during forced convective subcooled boiling with a plane jet has been yet made insufficient except for saturation condition when comparing CHF with impinging jet system including multiple jets. The present experiment has measured the CHF with plane jet on a rectangular heated surface of 40, 60, and 80 mm in length and 10 and 20 mm in width. Subcooled liquid being supplied through the plane jet with a different thickness of 1 and 2 mm, covers the heated surface where rigorous boiling takes place. The experiment varies a jet velocity from 3 to 15 m/s, a subcooling from 0 to 60 K, and system pressure at 0.1 MPa for water and at 1.5 to 3.0 MPa for R22. It is found that the existing correlation for saturation can be applied to the CHF of water, but hardly to the CHF of R22 in spite of saturation condition. After the effects of jet velocity and subcooling on the CHF can be elucidated, a new correlation including the effect of subcooling is proposed to predict most of the CHF data within an accuracy of ±20 percent. This correlation for saturated condition is found to interestingly agree with that theoretically derived by applying the Katto and Haramura criterion to this system. Received on 8 January 1997  相似文献   

5.
The jet boiling heat transfer of a bar water–CuO particle suspensions (nanofluids) jet impingement on a large flat surface was experimentally investigated. The experimental results were compared with those from water. The quantificational effects of the nanoparticles concentration and the flow conditions on the nucleate boiling heat transfer and the critical heat flux (CHF) were investigated. The experimental data showed that the jet boiling heat transfer for the water–CuO nanofluid is significantly different from those for water. The nanofluids have poor nucleate boiling heat transfer compared with the base fluid due to that a very thin nanoparticle sorption layer was formed on the heated surface. The CHF for the nanofluid increased compared with that of water. The reasons were that the solid–liquid contact angle decreased due to a very thin sorption layer on the heated surface and the jet and agitating effect of the nanoparticles on the subfilm layer enhance supply of liquid to the surface.  相似文献   

6.
An experimental study was performed to characterize the boiling heat transfer of impinging circular submerged jets on simulated microelectronic chips with a nominal area of 5 mm × 5 mm. The heat transfer modes included natural convection, partially developed nucleate boiling, fully developed nucleate boiling and critical heat flux. The study included the effects of jet parameters and fluid subcooling on the nucleate boiling. The results showed that the nucleate boiling data varied only with fluid subcooling regardless of jet parameters and that both the pool and impingement nucleate boiling curves at the same subcooling condition were well correlated. The high heat flux portions of the boiling curves with jet exit velocities greater than 10 m/s were corrected for the elevated saturation temperature. A new expression was developed with an interpolation method to construct the partially developed nucleate boiling curve.  相似文献   

7.
 An experimental study of transient boiling heat transfer during a cooling of a hot cylindrical block with an impinging water jet has been made at atmospheric pressure. The experimental data were taken for the following conditions: a degree of subcooling of ΔT sub = 20–80 K, a jet velocity of u j  = 5–15 m/s, a nozzle diameter of d j  = 2 mm and three materials of copper, brass and carbon steel. The block was initially and uniformly heated to about 250 °C and the transient temperatures in the block were measured at eight locations in r-direction at two different depths from the surface during the cooling of hot block. The surface heat flux distribution with time was evaluated using a numerical analysis of 2-D heat conduction. Behavior of the wetting front, which is extending the nucleate boiling region outward, is observed with a high-speed video camera. A position of wetting region is measured and it is correlated well with a power function of time. The changes in estimated heat flux and temperature were compared with the position of wetting region to clarify the effects of subcooling, jet velocity and thermal properties of block on the transient cooling. Received on 17 March 2000  相似文献   

8.
Heat transfer coefficients in nucleate pool boiling of binary and ternary non-azeotropic hydrocarbon mixtures were obtained experimentally using a vertical electrically heated cylindrical carbon steel surface at atmospheric pressure with several surface roughness. The fluids used were Methanol/1-Pentanol and Methanol/1-Pentanol/1,2-Propandiol at constant 1,2-Propandiol mole fraction of 30%. Heat fluxes were varied in the range 25–235 kW/m2. The cylindrical heater surface was polished to an average surface roughness of 0.2 μm, and sandblasted yielding surface roughness of 2.98 and 4.35 μm, respectively. The experimental results were compared to available prediction correlations, indicating that the correlations based on the boiling range are in better qualitative agreement than correlations based on the phase envelope. Increasing surface roughness resulted in an increase in the heat transfer coefficient, and the effect was observed to be dependent on the heat flux and fluid composition.  相似文献   

9.
The dynamic behavior of a water droplet impinging upon a heated surface was shown to be significantly different, depending on the normal momentum of the impinging droplet before impact. This experimental study focused mainly on the effects of the impinging angle of the droplet on impact dynamics and its dependence on surface temperature. At the surface temperature of the nucleate boiling regime, disintegration of the droplet did not occur, whereas the deforming droplet adhered to the surface. The liquid film was spread and contracted several times on the horizontal surface, but the expanded droplet merely slipped without noticeable contraction on the inclined surfaces. In the film boiling regime, the impinging droplet spread over the surface as a liquid film separated from the surface by the vapor produced. Depending on the magnitude of the normal momentum of droplet, disintegration into several irregular shapes of liquid elements occurred in the case of the horizontal and 30°-inclined surfaces. The impinging droplet in the case of the 60°-inclined surface did not break up and tended to recover its original spherical shape. Received: 16 February 1999/Accepted: 9 November 1999  相似文献   

10.
The boiling models use departure diameter and frequency in closure relations for the calculation of nucleate boiling heat flux. These parameters are normally derived from empirical correlations which depend heavily on experiments. While these parameters are studied mostly for saturated conditions, there is not sufficient data for the values of departure diameter and frequency in subcooled boiling. In this work, the bubble departure characteristics, i.e. the departure diameters and frequency have been measured using high speed visualization experiments with subcooled demineralized water at atmospheric pressure for nucleate pool boiling conditions. The water pool dimensions were 300 mm × 135 mm × 250 mm with four different heating elements to carry out the parametric studies of bubble departure behavior. The considered parameters were heater surface roughness, heater geometry and heater inclination along with the experimental conditions like degree of subcooling (ΔTsub = 5−20 K), superheat (ΔTsat = 1−10 K) and the heat flux. The departure diameters and frequencies were directly measured from the images captured. It was intended to generate the subcooled nucleate pool boiling data under a wide range of conditions which are not present in the literature. The departure diameter was found to increase with the wall superheat, heater size and the inclination angle while the liquid subcooling and surface roughness produced a damping effect on the diameter. The departure frequency was found to increase with the wall superheat and the inclination angle, but decreases with an increase in the heater size. The frequency increases with the degree of subcooling except very close to the saturation, and is unaffected by the surface roughness beyond a certain superheat value.  相似文献   

11.
A three-dimensional bubble-tracking model of subcooled nucleate boiling flow in a vertical channel at low-pressure conditions is proposed with specific application to the case of boiling in an annulus with a central heating rod. Vapour is distributed in the liquid in the form of individually tracked bubbles. The overall behaviour of the liquid–vapour system results from motion, interaction, coalescence and boiling mechanisms prescribed mostly at the level of bubbles. Bubbles are nucleated at nucleation sites randomly distributed over the heated surface. After nucleation, bubbles slide on the heated wall, detach and then migrate into the lower-temperature region away from the heated surface, where they condense. The proposed model was applied to experiments on subcooled boiling from Purdue University (USA). Experimental and calculated void fraction radial profiles at different axial locations are compared.  相似文献   

12.
Heat transfer in complex physical situations such as nucleate boiling, quenching and dropwise condensation is strongly affected by the presence of a liquid–vapor–solid triple contact line, where intense energy transfer and phase change occur. A novel experimental technique for the detection of the liquid–vapor–solid line in these situations is presented. The technique is based on high-speed infrared (IR) thermometry through an IR-transparent silicon wafer heater; hence the name DEPIcT, or DEtection of Phase by Infrared Thermometry. Where the heater surface is wet, the IR camera measures the temperature of the hot water in contact with the heater. On the other hand, where vapor (whose IR absorptivity is very low) is in contact with the heater, the IR light comes from the cooler water beyond the vapor. The resulting IR image appears dark (cold) in dry spots and bright (hot) in wetted area. Using the contrast between the dark and bright areas, we can visualize the distribution of the liquid and gas phases in contact with the heater surface, and thus identify the liquid–vapor–solid contact line. In other words, we measure temperature beyond the surface to detect phases on the surface. It was shown that even small temperature differences (∼1 °C) can yield a sharp identification of the contact line, within about 100 μm resolution. DEPIcT was also shown to be able to detect thin liquid layers, through the analysis of interference patterns.  相似文献   

13.
Experimental and numerical study was conducted to investigate the bubble behaviors in subcooled flow nucleate boiling. The bubble behaviors in subcooled flow boiling in an upward annular channel were investigated in the range of subcooling degree 5–30 K by visualization with high spatial and temporal resolutions using a high speed video camera and Cassegrain tele-microscope. Obvious deformation on the upstream side surface of the bubble during its growth process was frequently observed. This deformation phenomenon was caused by the condensation occurring at the upstream side bottom of the bubble, which results from the Marangoni flow along the bubble surface from the bubble bottom to the top. Since the Marangoni flow cannot be directly observed by the current experiments because it occurs in a very thin interface along the bubble surface, the numerical simulations of bubble growth and departure behaviors in subcooled flow boiling were carried out. As a result, it was confirmed that the bubble deformation was caused by the Marangoni flow along the bubble surface. Moreover, the phenomenon of wave propagation on the bubble surface during the condensation process was observed, and it can enhance the heat transfer between the bubble and the surrounding subcooled liquid.  相似文献   

14.
This work reports experiments to visualize nucleate boiling on an enhanced tubular surface having sub-surface tunnels and surface pores. The finned copper tube had 1575 fins/m (40 fins/in.) and 0.8 mm fin height. The fins are covered by a thin foil sheet having 0.23 mm pores at 1.5 mm pore pitch along each interfin region. Data are provided for two foil cover sheets, one copper and the other a transparent plastic. The uniqueness of this work is that the visualization method allowed direct observation of the boiling process in the subsurface tunnels. Use of a high speed camera with 30 × magnification allowed detailed observation of the evaporation process in the tunnels and of the vapor bubbles emerging from the pores. The experiments were conducted for saturated and subcooled boiling in the horizontal and vertical orientations. For the vertical tube, the saturated boiling experiments showed that all of the tunnels were vapor filled except for liquid menisci in the corners. This was also true for the horizontal tube at high heat flux. For the horizontal tube at low heat flux, portions of the tunnel length was liquid filled. A large portion (70–90%) of the region was vapor filled except for liquid menisci in the corners, and the remaining part of the region had oscillating menisci. These experiments provide conclusive proof that the heat transfer mechanism in the subsurface tunnels is evaporation on the menisci in the corners.  相似文献   

15.
 Interfacial mass transfer mechanisms played an essential role to the high heat transfer efficiency noted for nucleate boiling. There existed a zone around the bubble surface that exhibited zero net mass flux, termed herein as the “zero-flux zone”. This work investigated analytically the interfacial vaporization and condensation processes around a boiling bubble, based on which the positional dependence of zero-flux zone was derived. For a stationary bubble the zero-flux zone shifted to the upper hemisphere with decreasing wall superheat and/or with increasing contact angle. Moreover, the bubble growth (shrinkage) largely enhanced (retarded) such a trend. At the extreme condition where the bubble grew at a very fast speed the entire bubble surface would be subject to liquid evaporation only. Experiments observed a “thermal jet” emerging from the bubble cap, which was attributed to the interfacial vapor condensation flux at the bubble cap. Received on 11 December 2000 / Published online: 29 November 2001  相似文献   

16.
The present paper focuses on the analysis of unsteady flow and heat transfer regarding an axisymmetric impinging synthetic jet on a constant heat flux disc. Synthetic jet is a zero net mass flux jet that provides an unsteady flow without any external source of fluid. Present results are validated against the available experimental data showing that the SST/k − ω turbulence model is more accurate and reliable than the standard and low-Re k − ε models for predicting heat transfer from an impinging synthetic jet. It is found that the time-averaged Nusselt number enhances as the nozzle-to-plate distance is increased. As the oscillation frequency in the range of 16–400 Hz is increased, the heat transfer is enhanced. It is shown that the instantaneous Nu distribution along the wall is influenced mainly by the interaction of produced vortex ring and wall boundary layer. Also, the fluctuation level of Nu decreases as the frequency is raised.  相似文献   

17.
Experimental study of water droplet boiling on hot, non-porous surfaces   总被引:1,自引:0,他引:1  
In this paper, the results of a series of experimental tests on single- and multi-droplet boiling systems are presented and discussed. The main objectives of the present study are: a) to investigate experimentally the effect of the boiling onset on the evaporation rate of water droplets; b) to measure the evolution of the solid surface temperature during evaporation; c) to examine the possibility of improving spray cooling efficiencies. The behavior of small water droplets (from 10 to 50 μl) gently deposited on hot, non-porous surfaces is observed. The evaporation of multi-droplet arrays (50 and 100 μl) under the same conditions of the single-droplet tests is analyzed. In particular, the conditions which determine the onset of nucleate and film boiling are stressed out. In the experimental tests, the interaction of different materials with several multi-droplet systems is monitored by infrared thermography. The spray cooling efficiency is related to the solid temperature decrease as a function of the water mass flux. In the present study, the effect of varying the droplet volume and the mass flux is also analyzed and discussed. The results on the droplets evaporation time and on the solid surface transient temperature distribution are also compared with the data obtained by the same authors during the analysis of droplet evaporation in total absence of nucleate and film boiling. In order to analyze the different behavior of the evaporating droplet as a function of the solid surface thermal conductivity, evaporative transients on aluminum, stainless steel and macor (a glass-like, low-conductivity material) are considered. Received on 20 February 1998  相似文献   

18.
The present article reports on heat transfer characteristics associated with multiple laminar impinging air jet cooling a hot flat plat at different orientations. The work aims to study the interactions of the effects of cross flow, buoyancy induced flow, orientation of the hot surface with respect to gravity, Reynolds numbers and Rayleigh numbers on heat transfer characteristics. Experiments have been carried out for different values of jet Reynolds number, Rayleigh number and cross flow strength and at different orientations of the air jet with respect to the target hot plate. In general, the effective cooling of the plate has been observed to be increased with increasing Reynolds number and Rayleigh number. The results concluded that the hot surface orientation is important for optimum performance in practical applications. It was found that for Re ≥ 400 and Ra ≥ 10,000 (these ranges give 0.0142 ≤ Ri ≤ 1.59 the Nusselt number is independent on the hot surface orientation. However, for Re ≤ 300 and Ra ≥ 100,000 (these ranges give 1.59 ≤ Ri ≤ 42.85): (i) the Nusselt number for horizontal orientation with hot surface facing down is less that that of vertical orientation and that of horizontal orientation with hot surface facing up, and (ii) the Nusselt number of vertical orientation is approximately the same as that of horizontal orientation with hot surface facing up. For all surfaces orientations and for the entire ranges of Re and Ra, it was found that increasing the cross flow strength decreases the effective cooling of the surface.  相似文献   

19.
The present study investigated fluid dynamics and heat transfer of viscous pure liquids in a falling film evaporator. This is of special benefit as it avoids mass transfer effects on the evaporation behaviour. Experiments at a single-tube glass falling film evaporator were conducted. It allowed a full-length optical film observation with a high-speed camera. Additionally the evaporator was equipped with a slotted weir distribution device. Test fluids provided viscosities ranging from μ = 0.3 to 41 mPa s. The Reynolds number was between 0.7 and 1,930. Surface evaporation and the transition to nucleate boiling were studied to gain information about the film stability at maximum wall superheat. A reliable database for laminar and laminar-wavy viscous single component films was created. The experimental results show a significant enhancement in the wave development due to the film distribution. A wavy flow with different wave velocities was superposed to the film in each liquid load configuration without causing a film breakdown or dry spots on the evaporator tube. It was found that nucleate boiling can be allowed without causing film instabilities over a significant range of wall superheat.  相似文献   

20.
Experiments are conducted on the influence of turbulence and longitudinal vortices on subcooled flow boiling in a vertical, rectangular channel. Different flow inserts are used to create turbulence and vortices in the channel. Studied boiling regimes range from the onset of nucleate boiling over the critical heat flux up to fully developed film boiling. A wide range of measuring techniques is applied: time averaged particle image velocimetry (PIV) is used in cold flows for the evaluation of the effects the inserts have on the flow, high speed PIV and photography are used to determine the effects on the fluid and vapor movement in boiling experiments. Digital Holographic Interferometry is used for the evaluation of temperature distributions in the boiling flow. Furthermore, optical microprobes are used to obtain pointwise measurements in areas inaccessible to the imaging techniques. The experiments show that the flow inserts can have considerable impact on the heat fluxes and the distribution of vapor and temperature along the channel. All used inserts lead to an increase in critical heat flux, which is more pronounced for stronger turbulence and higher flow rates and fluid subcoolings. The measuring techniques reveal both a better transport of vapor from the heater surface as well as an increase in mixing in the liquid phase with flow inserts.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号