首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of the addition of Co on the martensitic transformation and Curie transition temperatures of polycrystalline Ni46-xCu4CoxMn33.sGa16.5 (x = 0, 1, 3, 5) alloys are investigated. An abrupt decrease in the martensitic transformation temperature and an obvious increase in the Curie transition temperature of austenite (TA) are observed when Co is doped in the NiCuMnGa alloy. As a result, the composition range for obtaining the magnetostructural transition is extended. Furthermore, the effect of a strong magnetic field on the magnetostructural transition is analyzed. This study offers a possible method to extend the composition range for obtaining magnetostructural transition in Heusler alloys.  相似文献   

2.
Cu对Ni50Mn36In14相变和磁性的影响   总被引:1,自引:0,他引:1       下载免费PDF全文
柳祝红  伊比  李歌天  马星桥 《物理学报》2012,61(10):108104-108104
文章研究了Cu替代部分Ni对铁磁性形状记忆合金Ni50Mn36In14相变和磁性的影响规律. 研究表明,在Ni50-xCuxMn36In14中,随着Cu含量的增加,相变温度逐渐降低. Cu含量低于5%时,奥氏体的磁性强于马氏体的磁性, 母相和马氏体相的饱和磁化强度的差值ΔM随着Cu含量的增加而增大. 当Cu含量x=4.5时, ΔM迅速增加到80 emu/g, 并在该材料中观察到了磁场驱动的马氏体到奥氏体的转变,显示了该材料作为磁驱动磁电阻材料的潜在应用前景.当Cu含量高于5%时,奥氏体保持铁磁状态, 马氏体相由反铁磁状态变为铁磁状态,马氏体的磁性强于奥氏体的磁性, ΔM大大削弱,磁场驱动性质消失.  相似文献   

3.
系统研究了Mn和Cr元素掺杂对Ni_(55)Fe_(18)Ga_(27)合金马氏体相变温度和居里温度的影响.研究表明:随着Mn含量的增加,Ni_(55-x)Mn_xFe_(18)Ga_(27)系列合金的马氏体相变温度逐渐降低,居里温度有所增加;Ni_(55)Fe_(18-x)Mn_xGa_(27)系列合金的马氏体相变温度也逐渐降低,但居里温度变化并不明显.随着Cr含量的增加,Ni_(55-x)Cr_xFe_(18)Ga_(27)系列合金的马氏体相变温度明显降低,居里温度则小幅度降低;Ni_(55)Fe_(18-x)Cr_xGa_(27)系列合金的马氏体相变温度和居里温度均有规律的降低.  相似文献   

4.
李盼盼  王敬民  蒋成保 《中国物理 B》2011,20(2):28104-028104
This paper studies the martensitic transformation in the Cu-doped NiMnGa alloys. The orthorhombic martensite transforms to L21 cubic austenite by Cu substituting for Ni in the Ni50-xCuxMn31Ga19 (x=2--10) alloys, the martensitic transformation temperature decreases significantly with the rate of 40 K per Cu atom addition. The variation of the Fermi sphere radius (kF) is applied to evaluate the change of the martensitic transformation temperature. The increase of kF leads to the increase of the martensitic transformation temperature.  相似文献   

5.
刘俊  龚元元  徐桂舟  徐锋 《中国物理 B》2017,26(9):97501-097501
An investigation on the magnetostructural transformation and magnetocaloric properties of Ni_(48-x)Co_2Mn_(38+x)Sn_(12)(x = 0, 1.0, 1.5, 2.0, and 2.5) ferromagnetic shape memory alloys is carried out. With the partial replacement of Ni by Mn in the Ni_(48)Co_2Mn_(38)Sn_(12) alloy, the electron concentration decreases. As a result, the martensitic transformation temperature is decreased into the temperature window between the Curie-temperatures of austenite and martensite. Thus, the samples with x = 1.5 and 2.0 exhibit the magnetostructural transformation between the weak-magnetization martensite and ferromagnetic austenite at room temperature. The structural transformation can be induced not only by the temperature,but also by the magnetic field. Accompanied by the magnetic-field-induced magnetostructural transformation, a considerable magnetocaloric effect is observed. With the increase of x, the maximum entropy change decreases, but the effective magnetic cooling capacity increases.  相似文献   

6.
The investigation addresses the effect of Mn incorporation for Ni on the properties of a series of Ni77−xMnxGa23 (x=22-29; at%) ferromagnetic shape memory alloys prepared in the form of ribbons by a melt spinning technique. Phase transformation studies in these ribbons by differential scanning calorimetry revealed that austenitic start and martensitic start temperatures decreased with the increase in Mn content. The Curie temperature (TC) of these alloys determined from thermal variation of magnetisations was found to rise with increasing Mn content. The martensitic transformation temperatures were above TC in low Mn containing (x=22 and 23) alloys. Morphology observed through transmission electron microscopy manifested complex martensitic features in the alloy with x=22 while x=29 had an austenitic phase. The alloys with intermediate Mn content (x=24, 25) had overlapping magnetic and martensitic transformations close to room temperature. The thermal lag between austenitic and martensitic characteristic temperatures in these alloys has been corroborated to their structural state. X-ray diffraction indicated a predominant martensite phase and austenite phase in low and high Mn containing alloys respectively. In-situ diffraction studies during thermal cycle indicate martensite-austenite transformations.  相似文献   

7.
用Si元素替代CoNiGa合金中的Ga元素后,研究了材料的结构、马氏体相变及其磁性的变化.结果发现,当Si原子的含量在0—10%范围内,材料能够形成体心立方结构,并且具有很好的热弹性马氏体相变行为.进一步研究指出,简单的从掺杂元素的原子半径大小来判断其对奥氏体稳定性的影响是不够的,必须从考虑掺杂原子与基本元素原子半径之间的比例来考虑这一问题.同时还发现Curie温度和饱和磁化强度随着Si含量的上升而有所降低,但是其马氏体的各向异性随着Si含量的增加而增强,这一点对于在合金中获得大磁感生应变具有指导意义. 关键词: 铁磁形状记忆合金 马氏体相变 CoNiGaSi合金  相似文献   

8.
The magnetic, magnetocaloric and thermal characteristics have been studied in a Ni(50.3)Mn(20.8)Ga(27.6)V(1.3) ferromagnetic shape memory alloy (FSMA) transforming martensitically at around 40?K. The alloy shows first a transformation from austenite to an intermediate phase and then a partial transformation to an orthorhombic martensite, all the phases being ferromagnetically ordered. The thermomagnetization dependences enabled observation of the magnetocaloric effect in the vicinity of the martensitic transformation (MT). The Debye temperature and the density of states at the Fermi level are equal to θ(D)?=?(276?±?4)?K and 1.3?states/atom?eV , respectively, and scarcely dependent on the magnetic field. The MT exhibited by Ni-Mn-Ga FSMAs at very low temperatures is distinctive in the sense that it is accompanied by a hardly detectable entropy change as a sign of a small driving force. The enhanced stability of the cubic phase and the low driving force of the MT stem from the reduced density of states near the Fermi level.  相似文献   

9.
The total energy, electronic structures, and magnetisms of the Al Cu2Mn-type Co2TiSb1-xSnx(x = 0, 0.25, 0.5) with the different lattice parameter ratios of c/a are studied by using the first-principles calculations. It is found that the phase transformation from the cubic to the tetragonal structure lowers the total energy, indicating that the martensitic phase is more stable and that a phase transition from austenite to martensite may happen at a lower temperature. Thus, a ferromagnetic shape memory effect can be expected to occur in these alloys. The Al Cu2Mn-type Co2TiSb1-xSnx(x = 0, 0.25, 0.5) alloys are weak ferrimagnets in the austenitic phase and martensitic phase.  相似文献   

10.
The first order martensitic transition in the ferromagnetic shape memory alloy Ni(45)Co(5)Mn(38)Sn(12) is also a magnetic transition and has a large field induced effect. While cooling in the presence of a field this first order magnetic martensite transition is kinetically arrested. Depending on the cooling field, a fraction of the arrested ferromagnetic austenite phase persists down to the lowest temperature as a magnetic glassy state, similar to the one observed in various intermetallic alloys and in half doped manganites. A detailed investigation of this first order ferromagnetic austenite (FM-A) to low magnetization martensite (LM-M) state transition as a function of temperature and field has been carried out by magnetization measurements. Extensive cooling and heating in unequal field (CHUF) measurements and a novel field cooled protocol for isothermal MH measurements (FC-MH) are utilized to investigate the glass like arrested states and show a reverse martensite transition. Finally, we determine a field-temperature (HT) phase diagram of Ni(45)Co(5)Mn(38)Sn(12) from various magnetization measurements which brings out the regions where thermodynamic and metastable states coexist in the HT space, clearly depicting this system as a 'magnetic glass'.  相似文献   

11.
A series of Ni51.4Mn28.3Ga20.3/Si(100) thin film composites with different film thicknesses varying from 0.1 to 5 μm have been prepared by magnetron sputtering and subsequently annealed. X-ray powder diffraction patterns of the films show the features associated with the lattice-modulated martensitic phase and/or cubic austenite at room temperature. 220-fiber texture was confirmed by the X-rays measurements made at 150 °C. While the Curie temperature is almost film thickness independent, the martensitic transformation temperature shows a strong descended dependence in the submicron range. The substrate curvature measurements demonstrate that the forward and reverse martensitic transformation in the films is accompanied by the reversible relaxation and accumulation of residual stress, originally created by the thermal treatment due to the difference in thermal expansion of the film and substrate. The values of residual stresses measured by both substrate curvature and X-rays diffraction methods at constant temperatures are found to be dependent on the film thickness. This behavior appears in correlation with the thickness dependence of the transformation temperature.  相似文献   

12.
研究了MnNiGe1-xGax (x=0–0.30) 系列合金中成分、结构、马氏体相变性质和磁性的相互关系. 在较小的成分范围内, Ga取代Ge元素可有效地将马氏体相变温度降低近400 K. Ga的引入削弱了体系中的共价成键作用, 马氏体相显示出磁交换作用的增强. 相图显示, 掺杂使马氏体相变先后穿过TN 和TC 两个磁有序温度, 居里温度窗口效应在体系有存在的可能, 磁性对相变温度的成分关系有所影响. 实验观察到合金变磁转变的特性及相变行为对制备方法的敏感性. 这些特性的发现, 有利于进一步优化这类材料的磁结构和相变特性, 获得具有应用价值的新材料. 关键词: MM’X合金 马氏体相变 磁有序温度 变磁转变  相似文献   

13.
Ni2MnGa(100) single crystal studied using low energy electron diffraction (LEED) and ultraviolet photoemission spectroscopy (UPS) exhibits interesting modification of the surface properties that are mainly influenced by surface composition as well as intrinsic effects. In the martensite phase, the LEED spot profiles show presence of an incommensurate modulation for the stoichiometric surface. In contrast, a commensurate modulation is observed for Mn-excess Ni–Mn–Ga surface. A pre-martensite phase is identified at the surface. Both the surface martensitic and pre-martensitic transition temperatures decrease as the Mn content increases. The UPS spectra in the austenite phase exhibit systematic change in shape as a function of surface composition that can be related to changes in the hybridization between Ni and Mn 3d states. The spectra in the martensite phase exhibit interesting modifications near the Fermi level, which has been compared to density of states calculated for a modulated structure by ab-initio density functional theory. Intrinsic surface properties dissimilar from the bulk are enhanced hysteresis width of the martensite transition and increased pre-martensitic transition temperature.  相似文献   

14.
Magnetization and high resolution neutron powder diffraction measurements have been made on the magnetic shape memory alloy Ni(1.84)Mn(1.64)In(0.52). The compound undergoes a broad structural phase transition, which on heating starts at ~150?K and finishes at ~215?K. On cooling there is a ~20?K hysteresis. The high temperature parent phase is cubic (a?=?5.988??) with the L2(1) structure in which the excess Mn atoms occupy the vacancies on the Ni and In sites. The magnetic moment is located mainly on the Mn atoms with the same magnitude on both the 4a (Mn) and 4b (In) sites. The low temperature martensite is monoclinic with parameters a?=?4.405(2), b?=?5.553(2), c?=?12.950(2)??, β?=?86.47(10)°?and space group P2/m. The magnetic properties of the martensitic phase are complex and indicate metamagnetic behaviour.  相似文献   

15.
The solid-phase synthesis in epitaxial Mn/Fe(001) bilayer film systems with 24 at % of Mn has been shown to start at a temperature of 220°C with the formation of a γ-austenite lattice and the Mn and Fe films react completely under annealing to 600°C. In the sample cooling process after annealing below 220°C, the γ austenite undergoes a martensitic transformation to an oriented ∈(100) martensite. When the annealing temperature is increased above 600°C, Mn atoms migrate from the γ-lattice, which becomes unstable, and the film is partially again transformed to the epitaxial Fe(001) layer. The solid-phase synthesis in Mn/Fe(001) bilayer nanofilms and multilayers is assumingly determined by the inverse ε → γ martensitic transformation in the Mn-Fe system. The existence of a new low-temperature (~220°C) structure transition in the Mn-Fe system with a high iron content is assumed.  相似文献   

16.
黄庆学  陈峰华  张敏刚  许小红 《中国物理 B》2016,25(5):57305-057305
Highly textured Heusler alloy Mn_(46)Ni_(42)Sn_(11)Sb_1 ribbons were prepared by melt spinning. The annealed high Mn content Mn46Ni42Sn11Sb1 ribbon cross-section microstructure, crystal structure, martensitic transformation(MT), and magnetoresistance(MR) properties were investigated. The MR in the annealed ribbon was assessed by the magnetic field direction perpendicular to the ribbon surface with the magnetic field up to 30 k Oe. The large negative value of 25% for MR was obtained at 244 K. The exchange bias(EB) effects of the as-spun and annealed ribbons were investigated. After annealing, the EB effects have been improved by about 25 Oe at the temperature of 50 K. The magnetizations have increased approximately by 10% more than the as-spun ribbon.  相似文献   

17.
In this study, the Cu–Al–Mn–X (X = Ni, Ti) shape memory alloys at the range of 10–12 at.% of aluminum and 4–5 at.% manganese were produced by arc melting. We have investigated the effects of the alloying elements on the transformation temperatures, and the structural and the magnetic properties of the quaternary Cu–Al–Mn–X (X = Ni, Ti) shape memory alloys. The evolution of the transformation temperatures was studied by differential scanning calorimetry with different heating and cooling rates. The characteristic transformation temperatures and the thermodynamic parameters were highly sensitive to variations in the aluminum and manganese content, and it was observed that the nickel addition into the Cu–Al–Mn system decreased the transformation temperature although Ti addition caused an increase in the transformation temperatures. The effect of the nickel and the titanium on the thermodynamic parameters such as enthalpy and entropy values was investigated. The structural changes of the samples were studied by X-ray diffraction measurements and by optical microscope observations at room temperature. It is evaluated that the element Ni has been completely soluble in the matrix, and the main phase of the Cu–Al–Mn–Ni sample is martensite, and due to the low solubility of the Ti, the Cu–Al–Mn–Ti sample has precipitates, and a martensite phase at room temperature. The magnetic properties of the Cu–Al–Mn, Cu–Al–Mn–Ni and Cu–Al–Mn–Ti samples were investigated, and the effect of the nickel and the titanium on the magnetic properties was studied.  相似文献   

18.
18 MeV质子辐照对TiNi形状记忆合金R相变的影响   总被引:4,自引:4,他引:0       下载免费PDF全文
研究了用HZ B串列加速器的18MeV质子辐照对TiNi形状记忆合金R相变的影响,辐照在奥氏体母相状态下进行。示差扫描量热法(DSC)表明,辐照后R相变开始温度TsR和逆马氏体相变结束温度TfA随辐照注量的增加而降低。当注量为1.53×1014/cm2时,TsR和TfA分别下降6K和13K,辐照未引起R相变结束温度TfR和逆马氏体相变开始温度TsA的变化。表明辐照后母相(奥氏体相)稳定。透射电镜(TEM)分析表明辐照后没有引起合金可观察的微观组织变化。辐照对R相变开始温度TsR和逆马氏体相变结束温度Af的影响可能是由于质子辐照后产生了孤立的缺陷团,形成了局部应力场,引起晶格有序度的下降所造成的。  相似文献   

19.
57Fe Mössbauer effect spectroscopy is employed to determine the relationship between the microstructure and the mechanical properties of martensitic steels with base composition Fe-10wt%Cr-0,26wt%C. The microstructure consists predominantly of two phases: martensite and austenite. The effect of low concentrations of both Mn and Ni on the structure and the mechanical properties of these steels is studied. The results indicate that Mn and Ni additions are equally effective in increasing the fraction of retained austenite. The austenite is an important phase since it is considered to be beneficial to the toughness of steel. However, we find that the impact toughness first decreases and then increases as a function of the fraction of austenite.  相似文献   

20.
Melt spun Ni50−xMn37+xIn13 (2≤x≤5) ribbons were investigated for the structure, microstructure, magneto-structural transitions and inverse magnetocaloric effect (IMCE) associated with the first-order martensitic phase transition. The influence of excess Mn in Ni site (or Ni/Mn content) on the martensite transition and the associated magnetic and magnetocaloric properties are discussed. It was found that with the increase in Mn content, the martensitic transition shifted from 325 to 240 K as x is varied from 2 to 4, and the austenite phase was stabilized at room temperature. The x=5 ribbon did not show the martensitic transition. For the x=3 ribbon, the structural and magnetic transitions are close together unlike in the x=4 ribbon in which they are far (∼60 K) apart. The zero field cooled and field cooled curves support the presence of exchange bias blocking temperature due to antiferromagnetic interactions in the ribbons. A large change in the magnetization between the martensite and austenite phases was observed for a small variation in the Ni/Mn content, which resulted in large IMCE. A large positive magnetic entropy change (ΔSM) of 32 J/kg K at room temperature (∼ 300 K) for a field change of 5 T with a net refrigeration capacity of 64 J/kg was obtained in the Ni47Mn40In13 ribbon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号