首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Complete active space self-consistent field (CASSCF) and multireference CI with singles and doubles (MR-CISD) calculations [including extensivity corrections, at MR-CISD+Q and multireference averaged quadratic coupled cluster (MR-AQCC) levels] have been performed to characterize the low-lying valence and the Rydberg states of 2H-tetrazole. The highest level results (MR-AQCC/d'-aug'-cc-pVDZ) indicate the following ordering of the valence singlet excited states: S(1) (n-pi*), 6.06 eV; S(2) (n-pi*), 6.55 eV; S(3) (pi-pi*), 6.55 eV. The MR-CISD+Q/d'-aug'-cc-pVDZ results indicate the same ordering, but at slight higher energies: 6.16, 6.68, and 6.69 eV, respectively. According to our MR-CISD+Q/d'-aug'-cc-pVDZ results, the next two states are Rydberg states, at 7.69 eV (pi-3s) and 7.89 eV (n-3s). The calculated energies of these two states, as well as their proximity, are consistent with the conclusion reached by Palmer and Beveridge (Chem Phys 1987, 111, 249) that the first band of the photoelectron spectrum of 2H-tetrazole is likely to be associated to the first two ionizations processes (of pi and N lone pair electrons), at energies close to 11.3 eV.  相似文献   

2.
Sequential Monte Carlo/quantum mechanical calculations are performed to study the solvent effects on the electronic absorption spectrum of formamide (FMA) in aqueous solution, varying from hydrogen bonds to the outer solvation shells. Full quantum-mechanical intermediate neglect of differential overlap/singly excited configuration interaction calculations are performed in the supermolecular structures generated by the Monte Carlo simulation. The largest calculation involves the ensemble average of 75 statistically uncorrelated quantum mechanical results obtained with the FMA solute surrounded by 150 water solvent molecules. We find that the n → π* transition suffers a blueshift of 1,600 cm−1 upon solvation and the π → π* transition undergoes a redshift of 800 cm−1. On average, 1.5 hydrogen bonds are formed between FMA and water and these contribute with about 20% and about 30% of the total solvation shifts of the n → π* and π → π* transitions, respectively. The autocorrelation function of the energy is used to sample configurations from the Monte Carlo simulation, and the solvation shifts are shown to be converged values. Received: 14 March 2002 / Accepted: 3 April 2002 / Published online: 24 June 2002  相似文献   

3.
A quantitative survey on the performance of multireference (MR), configuration interaction with all singles and doubles (CISD), MRCISD with the Davidson correction and MR-average quadratic coupled cluster (AQCC) methods for a wide range of excited states of the diatomic molecules B2, C2, N2 and O2 is presented. The spectroscopic constants r e, ωe, T e and D e for a total of 60 states have been evaluated and critically compared with available experimental data. Basis set extrapolations and size-extensivity corrections are essential for highly accurate results: MR-AQCC mean-errors of 0.001 ?, 10 cm−1, 300 cm−1 and 300 cm−1 have been obtained for r e, ωe, T e and D e, respectively. Owing to the very systematic behavior of the results depending on the basis set and the choice of method, shortcomings of the calculations, such as Rydberg state coupling or insufficient configuration spaces, can be identified independently of experimental data. On the other hand, significant discrepancies with experiment for states which indicate no shortcomings whatsoever in the theoretical treatment suggest the re-evaluation of experimental results. The broad variety of states included in our survey and the uniform quality of the results indicate that the observed systematics is a general feature of the methods and, hence, is molecule-independent. Received: 12 June 2000 / Accepted: 1 September 2000 / Published online: 21 December 2000  相似文献   

4.
Ab initio calculations on the ground and valence excited states of the GaF molecule have been performed by using the internally contracted multireference electronic correlation methods (MR-CISD, MR-CISD + Q, and MR-AQCC) with entirely uncontracted all-electronic basis sets and Douglas-Kroll scalar relativistic correction. The potential energy curves of all valence states and the spectroscopic constants of bound states are fitted. It is the first time that the 12 valence Lambda-S states of GaF molecule and all of the 23 Omega states generated from the former are studied in a theoretical way. Calculation results well reproduce most of the experimental data. The effects of the size-extensivity correction and the avoided crossing rule between Omega states of the same symmetry are analyzed. The transition properties of the A 3Pi0+, B 3Pi1, C 1Pi1, and 3Sigma1+ states are predicted, including the transition dipole moments, the Franck-Condon factors and the radiative lifetimes. The radiative lifetime of the C 1Pi1 state of GaF molecule is of the order of nanosecond, implying that it is a rather short-live state. The lifetimes of the B 3Pi1 and 3Sigma1+ states are of the order of microsecond, while the lifetime of the A 3Pi0+ state are the order of millisecond.  相似文献   

5.
 Ab initio calculations have been performed to study the molecular structures and vibrational levels of the four low-lying ionic states (1, 22Π, and 1, 22Σ+) of carbonyl sulfide. The global regions of the potential-energy surfaces have been obtained by multireference single and double excitation configuration interaction calculations. Vibrational calculations using explicit vibrational Hamiltonians have been used for vibrational analysis. The equilibrium molecular structures and a vibrational analysis of the four ionic states are presented. The theoretical ionization intensity curves including the vibrational structures of the ionic states are also presented and are compared with the photoelectron spectrum. Received: 20 January 2001 / Accepted: 22 August 2001 / Published online: 30 October 2001  相似文献   

6.
 Ab initio calculations have been performed to investigate the state transition in photoinduced electron transfer reactions between tetracyanoethylene and biphenyl as well as naphthalene. Face-to-face conformations of electron donor–acceptor (EDA) complexes were selected for this purpose. The geometries of the EDA complexes were determined by using the isolated optimized geometries of the donor and the acceptor to search for the maximum stabilization energy along the center-to-center distance. The correction of interaction energies for basis set superposition error was considered by using counterpoise methods. The ground and excited states of the EDA complexes were optimized with complete-active-space self-consistent-field calculations. The theoretical study of the ground state and excited states of the EDA complex in this work reveals that the S1 and S2 states of the EDA complexes are charge–transfer (CT) excited states, and CT absorption which corresponds to the S0→S1 and S0→S2 transitions arise from π−π* excitation. On the basis of an Onsager model, CT absorption in dichloromethane was investigated by considering the solvent reorganization energy. Detailed discussions on the excited state and on the CT absorptions were made. Received: 30 April 2001 / Accepted: 18 October 2001 / Published online: 9 January 2002  相似文献   

7.
 The Rydberg character of the excited states of free-base porphin (FBP) has been investigated by the ab initio configuration interaction singles (CIS) method and the state-averaged complete-active-space self-consistent-field method. Double-zeta basis sets augmented with s, p, and d Rydberg functions and d polarization functions have been employed. Two types of molecular orbitals sets, the restricted Hartree–Fock molecular orbitals obtained for the ground state (1A g ) and for the cation state (2A u ), have been used in the CIS calculations. All the calculations show that Rydberg-type excitations play important roles especially in the N bands. In this article we propose applying the model of a perturbed Rydberg series to interpret the excited states of FBP. By using this model, we have succeeded in analyzing the characteristics of the excited states as well as the experimental oscillator strengths, which have considerable magnitude even in the higher excited states. Received: 27 November 2000 / Accepted: 11 April 2001 / Published online: 27 June 2001  相似文献   

8.
 An overlap criterion is defined that connects the identification of core orbitals in a molecular system, which can be problematic, to that in isolated atoms, which is well defined. This approach has been tested on a variety of troublesome systems that have been identified in the literature, including molecules containing third-row main-group elements, and is shown to remove errors of up to 100 kcal/mol arising from an inconsistent treatment of core orbitals at different locations on a potential-energy surface. For some systems and choices of core orbitals, errors as large as 19 kcal/mol can be introduced even when consistent sets of orbitals are frozen, and the new method is shown to identify these cases of substantial core–valence mixing. Finally, even when there is limited core–valence mixing, the frozen-core approximation can introduce errors of more than 5 kcal/mol, which is much larger than the presumed accuracy of models such as G2 and CBS-QB3. The source of these errors includes interatomic core–core and core–valence dispersion forces. Received: 31 August 2001 / Accepted: 11 October 2001 / Published online: 9 January 2002  相似文献   

9.
 In order to identify ineffective and, hence, superfluous configurations in algorithmically generated configuration spaces, a direct configuration interaction (CI) method has been developed for determining completely general configurational expansions based on arbitrary determinantal configuration lists. While based on the determinantal ordering scheme of Knowles and Handy, our direct CI algorithm differs from previous ones by the use of the Slater–Condon expressions in direct conjunction with single and double replacements. A full, as well as a completely general selected, CI program has been implemented. With it, full configuration spaces of Ne, C2, CO and H2O with up to about 40 million determinants have been investigated. It has been found that, in all cases, fewer than 1% of the configurations in a natural-orbital-based configuration expansion reproduce the exact results within chemical accuracy. Received: 19 December 2000 / Accepted: 9 May 2001 / Published online: 11 October 2001  相似文献   

10.
 The ground state and several low-lying excited states of the Mg2 dimer have been studied by means of a combination of the complete-active-space multiconfiguration self-consistent-field (CASSCF)/CAS multireference second-order perturbation theory (CASPT2) method and coupled-cluster with single and double excitations and perturbative contribution of connected triple excitations [CCSD(T)] scheme. Reasonably good agreement with experiment has been obtained for the CCSD(T) ground-state potential curve but the dissociation energy of the only experimentally known A1Σ u + excited state of Mg2 is somewhat overestimated at the CASSCF/CASPT2 level. The spectroscopic constants D e, R e and ωe deduced from the calculated potential curves for other states are also reported. In addition, some spin–orbit matrix elements between the excited singlet and triplet states of Mg2 have been evaluated as a function of internuclear separation. Received: 10 May 2001 / Accepted: 15 August 2001 / Published online: 30 October 2001  相似文献   

11.
The results of large-scale valence ab initio calculations of the potential-energy curves for the ground states and several excited states of Cd–rare gas (RG) van der Waals molecules are reported. In the calculations, Cd20+ and RG8+ cores are simulated by energy-consistent pseudopotentials, which also account for scalar-relativistic effects and spin-orbit interaction within the valence shell. The potential energies of the Cd–RG species in the ΛS coupling scheme have been evaluated by means of ab initio complete-active-space multiconfiguration self-consistent-field (CASSCF)/CAS multireference second-order perturbation theory (CASPT2) calculations with a total 28 valence electrons, but the spin-orbit matrix has been computed in a reduced configuration interaction space restricted to the CASSCF level. Finally, the Ω potential curves are obtained by diagonalization of the modified spin-orbit matrix (its diagonal elements before diagonalization substituted by the corresponding CASPT2 eigenenergies). The calculated potential curves, especially the spectroscopic parameters derived for the ground states and several excited states of the Cd–RG species are presented and discussed in the context of available experimental data. The theoretical results exhibit very good agreement with experiment. Received: 20 April 2000 / Accepted: 1 September 2000 / Published online: 21 December 2000  相似文献   

12.
 The second-order correlation energy of M?ller–Plesset perturbation theory is computed for the neon atom using a wave function that depends explicitly on the interelectronic coordinates (MP2-R12). The resolution-of-identity (RI) approximation, which is invoked in the standard formulation of MP2-R12 theory, is largely avoided by rigorously computing the necessary three-electron integrals. The basis-set limit for the second-order correlation energy is reached to within 0.1 mE h. A comparison with the conventional RI-based MP2-R12 method shows that only three-electron integrals over s and p orbitals need to be computed exactly, indicating that the RI approximation can be safely used for integrals involving orbitals of higher angular momentum. Received: 9 May 2001 / Accepted: 31 October 2001 / Published online: 9 January 2002  相似文献   

13.
 A local-orbital-based ab initio approach to calculate correlation effects on quasi-particle energies in insulating solids is presented. The use of localized Wannier-type Hartree–Fock orbitals allows correlation effects to be efficiently assessed. First a Green's function approach based on exact diagonalization is introduced and this is combined with an incremental scheme, while subsequently different levels of perturbative approximations are derived from the general procedure. With these methods the band structure of LiF is calculated and good agreement with experiment is found. By comparing the different approximations proposed, including the exact diagonalization procedure, their relative quality is established. Received: 25 June 2001 / Accepted: 31 August 2001 / Published online: 19 December 2001  相似文献   

14.
Relativistic energy-consistent small-core lanthanide pseudopotentials of the Stuttgart–Bonn variety and extended valence basis sets have been used for the investigation of the dimers La2 and Lu2. It was found that the ground states for La2 and Lu2 are most likely 1 g + g 2π u 4) and 3 g (4f 144f 14σ g 2σ u 2πu 2), respectively. The molecular constants including error bars were derived from multireference configuration interaction as well as coupled-cluster calculations, taking into account corrections for atomic spin–orbit splitting as well as possible basis set superposition errors. The theoretical values for La2 (R e=2.70±0.03 ?, D e=2.31±0.13 eV, ωe=186±13 cm−1) show good agreement with the experimental binding energy (D e=2.52±0.22 eV), but the experimental vibrational constant in an Ar matrix (ωe=236±0.8 cm−1) is significantly higher. For Lu2 the theoretical values (R e=3.07±0.03 ?, D e=1.40±0.12 eV, ωe=123±1 cm−1) are in overall excellent agreement with experimental data (D e=1.43±0.34 eV, ωe=122± 1 cm−1). The electronic structures of La2 and Lu2 are compared to those other lanthanide dimers and trends in the series are discussed. Received: 25 March 2002 / Accepted: 2 June 2002 / Published online: 21 August 2002  相似文献   

15.
The [H,S,Cl] potential-energy surface has been investigated at the self-consistent field (SCF), complete active space self-consistent field (CASSCF), second-order M?ller–Plesset, coupled-cluster single-double and perturbative triple excitation, [CCSD(T)]/6-31G(d,p), 6-31G(2df,2pd), and correlation-consistent polarized valence triple zeta (cc-pVTZ) levels of theory. CCSD(T)/ cc-pVTZ results predict a very stable HSCl species, an isomer HClS, 51.84 kcal/mol higher in energy, and a transition state 57.68 kcal/mol above HSCl. Independent of the level of theory, results with the smaller 6-31G(d,p) basis set turned out to be poor, especially for HClS. Vibrational analysis indicates that both species can be easily differentiated if isolated. Bonding differences between these molecules are illustrated by contour plots of valence orbitals. Viewed classically, bonding in HClS involves a dative bond. Transition-state rate constants, and equilibrium constants for the HSCl ↔ HClS isomerization have been estimated for various temperatures (200–1000 K). At 298.15 K, the forward rate is predicted to be 7.95 × 10−29 s−1, and the equilibrium constant to be 2.31 × 10−38. Tunneling corrections vary from 1.57 at 298.15 K to 1.05 at 1000 K. Activation energies have been obtained by a two-points linear fit to the Arrhenius equation. Received: 7 May 1999 / Accepted: 22 July 1999 / Published online: 4 October 1999  相似文献   

16.
The valence π → π * excited states of anthracene and naphthacene are studied with multireference perturbation theory with complete active space self-consistent field reference functions. The predicted spectra provide a consistent assignment of all one- and two-photon spectra and T-T spectra of low-lying valence π → π * excited states of anthracene and naphthacene. The present theory predicts the valence π → π * excitation energies with an accuracy of 0.15 eV for anthracene and of 0.25 eV or better for naphthacene. The excited states of anthracene and naphthacene are compared with those of benzene and naphthalene studied previously. The present calculations predict that, going from anthracene to naphthacene, there is a symmetry reversal of the two lowest singlet state transitions, but not for the triplet, just as indicated by the experimental data. Some general trends of polyacene excited states are discussed based on the calculated results for benzene to naphthacene. Conclusive results obtained for anthracene and naphthacene can be used as a model for understanding the excited states of larger polyacenes. Received: 22 April 1998 / Accepted: 6 July 1998 / Published online: 28 September 1998  相似文献   

17.
 Configuration interaction calculations were carried out for neutral ground and excited states and positively and negatively ionized states of the V, Cr and Mn atoms. Energy convergence with respect to systematic expansion of both the one-electron and configuration bases was investigated for valence correlation. Contributions from core electrons to the differential correlation energies and relativistic effects were evaluated separately. Assuming additivity of these contributions, excitation energies, electron affinities and ionization potentials of the atoms were obtained. All calculated values were in excellent agreement with the observed values within a deviation of 0.056 eV except for the electron affinity of the V atom, which had a calculated value 0.110 eV larger than the experimental value. Received: 9 August 2000 / Accepted: 26 October 2000 / Published online: 3 April 2001  相似文献   

18.
A value of −0.33 eV or −7.6 kcal mol−1 has been obtained for the vertical delocalisation energy of trans-1,3-butadiene from a nonempirical molecular orbital calculation on the π system. The result agrees well enough with ab initio calculations to suggest that a simplified approach need not be semiempirical. In a basis of orthogonalised atomic orbitals the central bond order is found to be 0.295 (Hückel value 0.447) for the delocalised structure and 0.125 for the localised (Hückel value zero). Core resonance integrals between neighbouring atoms, the analogues of Hückel's β, have theoretical values of −3.9 and −3.2 eV compared with −3.6 eV in benzene. Received: 11 May 1999 / Accepted: 22 July 1999 / Published online: 2 November 1999  相似文献   

19.
 Calculations with the density functional theory (DFT) method using the most popular functional, Becke's three parameter hybrid with the Lee, Yang and Parr correlation functional, predict the π-delocalized configuration of the vinylacyl radical, CH2=CH—C(•)=O, to be more stable than the σ-localized configuration in contrast with ab initio unrestricted quadratic configuration interaction with single and double excitations calculations as previously found for the isoelectronic vinyl radical, Y-C(•)=CH2, bearing π-type α substituents. Experimental evidence on the electronic configuration adopted by vinyl radicals is contrasting. In the present case comparison with experiment indicates firmly that the currently available density functionals overestimate the stability of π-delocalized versus σ-localized configurations in radicals since they favor the π configuration for the γ-methylvinylacyl radical, CH3—CH=CH—C(•)=O, in contrast with unequivocal electron spin resonance data. This failure is mainly due to an incorrect estimate of dynamic correlation energy with DFT functionals. Received: 13 January 2000 / Accepted: 16 March 2000 / Published online: 21 June 2000  相似文献   

20.
 The convergence of chemisorption energy for hydrogen and oxygen on gold clusters is studied. Two theoretical approaches have been employed; wavefunction methods at the self-consistent-field second–order M?ller–Plesset level and density functional theory and the two methods are compared. Relativistic effective core potentials exploited in the former approach were developed in this work. Received: 25 October 1999 / Accepted: 21 February 2001 / Published online: 11 October 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号