首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
N. Alov  D. Kutsko  Z. Bastl 《Surface science》2006,600(8):1628-1631
Oxidation of vanadium metal surfaces at room temperature by low-energy oxygen ion beams is investigated by X-ray photoelectron spectroscopy (XPS). It is observed that ion-beam irradiation of clean V results in formation of thin oxide layer containing vanadium in oxidation states corresponding to VO, V2O3, VO2 and V2O5 oxides. The composition of the products of ion-beam oxidation depends markedly on oxygen ion fluence. The results of angle-resolved XPS measurements are consistent with a structure of oxide film with the outermost part enriched in V2O5 and VO2 oxides and with V2O3 and VO oxides located in the inner region of the oxide layer.  相似文献   

2.
Surface oxidation occurs if metals are bombarded with low-energy (1–5 keV) ions of a chemically active gas (oxygen) in vacuum. It is ascertained that ion bombardment leads to the generation of lower, intermediate, and higher oxides. The composition and thickness of an oxidized layer depend on the metal reactivity and the dose and energy of oxygen ions. The mechanism underlying the ion-beam oxidation of metal surfaces is proposed. Surface reduction is observed if higher oxides are bombarded with low-energy (1–5 keV) ions of inert gases (argon and helium) in vacuum. It is revealed that ion bombardment not only generates intermediate and higher oxides but sometimes gives rise to surface metallization. The composition and thickness of the reduced layer are determined by the oxide type, the kind of inert gases, and the dose and energy of bombardment. The mechanism describing the ion-beam reduction of higher metal oxide surfaces is proposed.  相似文献   

3.
Thin films of silicon nanoparticles (diameter 5-10 nm) were deposited on highly oriented pyrolytic graphite (HOPG) by low-pressure DC magnetron sputtering. The effect of different room-temperature oxidation techniques was investigated using XPS sputter-depth profiling. Both oxygen treatment during deposition (using an argon-oxygen mixture in the sputter gas) as well as post-deposition oxidation techniques (exposure to oxygen plasma beam, ambient air conditions) were studied. In all cases oxidation was found to involve the whole film down to the film/substrate interface, indicating a network of open pores. Depending on the type of oxidation between 15 and 25 at% of oxygen, mostly associated with low oxidation states of silicon, were detected in the interior of the film and attributed to oxidized surfaces of the individual silicon nanoparticles. The highest oxygen concentrations were found at the very film surface, reaching levels of 25-30% for films exposed to air or prepared by reactive magnetron sputtering. For the oxygen plasma-treated films even oxygen surface concentrations around 45% and fully oxidized silicon (i.e., SiO2) were achieved. At the Si/HOPG interface formation of silicon carbide was observed due to intermixing induced by Ar-ion beam used for sputter-depth profiling.  相似文献   

4.
The diffusion mechanism during the wet oxidation of Si(100) at 1373 K was investigated by successive oxidations finally containing isotopic water. SiO2 was first thermally grown on Si in non-labeled oxidizing ambient (dry O2 or H2O) followed by isotopic water (H218O) to trace 18O species in SiO2. The distributions of 16O and 18O in the oxide film were analyzed by means of secondary ion mass spectroscopy (SIMS). SIMS depth profiles show that there was a wide overlap of both isotopes (18O and 16O) throughout the SiO2 layer, no matter whether the first oxidation step was carried out in dry O2 or H2O, and the concentration gradient of 18O decreased with increasing oxidation time at the second oxidation step by H218O. The results suggest that the diffusion mechanism in SiO2 during water vapor oxidation is exchange diffusion; H2O related oxidizing species diffuse through the network with significant exchange with the pre-existing oxygen in it.  相似文献   

5.
《Composite Interfaces》2013,20(2-3):277-285
The aging effects of atmospheric plasma treatments on UHMPE fibers are studied. UHMPE fibers are treated for 0.5 and 1 min with He/O2/air gas and for 2 and 4 min with He/air gas by atmospheric pressure plasma on a capacitively coupled device at a frequency of 5 kHz. The samples are tested for fiber/epoxy interfacial shear strength at time intervals of 0, 3, 15 and 30 days after initial plasma treatment. Scanning electron microscopy shows micro-cracks on each set of treated fibers, which is not affected by aging over the 30 day study. Interfacial shear strengths (IFSS) for plasma-treated fibers are 2–3 times as high as that of the control. The IFSS for the plasma treated fibers remains constant up to 15 days and then decreases afterwards. XPS Analysis shows a slight increase in atomic concentration of oxygen and nitrogen for each plasma-treated sample. For the He/O2/air plasma-treated samples, XPS analysis shows an observable increase in C–OH bonds, C=O bonds and COOH bonds, while for the He/air plasma-treated samples, there is a slight increase in C–OH and O=C–O bonds. After 30 days, a decrease in oxygen content for all plasma-treated samples is manifested.  相似文献   

6.
Titanium silicides (TiSi2) films grown on Si(1 0 0) substrate were investigated by ex situ XPS depth profiling after athermal ion beam induced oxidation (IBO) at 12 keV O2+ incident energy and normal incidence. The composition and stoichiometry of these films were quantitatively determined as chemical state relative concentrations versus sputter time. “In depth” silicon and titanium oxidation states have been obtained after spectra deconvolution, showing a mixture of silicon dioxide, titanium dioxide, titanium suboxides, elemental titanium and residual traces of titanium nitride. Thermochemical data based on the corresponding enthalpies of formation of the oxides cannot explain our experimental results as in the case of low energy IBO, an oxygen defective altered layer is formed, presenting features of a reduced TiOx phase.  相似文献   

7.
Luminescence mechanism of ZnO thin film investigated by XPS measurement   总被引:1,自引:0,他引:1  
The effects of annealing environment on the luminescence characteristics of ZnO thin films that were deposited on SiO2/Si substrates by reactive RF magnetron sputtering were investigated by X-ray photoelectron spectroscopy (XPS) and photoluminescence (PL). An analysis of the O 1s peak of ZnO film revealed that the concentration of oxygen vacancies increased with the annealing temperature from 600 °C to 900 °C under an ambient atmosphere. The PL results demonstrated that the intensity of green light emission at 523 nm also increased with temperature. Under various annealing atmospheres, the analyses of PL indicated that only one emission peak (523 nm) was obtained, indicating that only one class of defect was responsible for the green luminescence. The green light emission was strongest and the concentration of oxygen vacancies was highest when the ZnO film was annealed in ambient atmosphere at 900 °C. The results in this investigation show that the luminescence mechanism of the emission of green light from a ZnO thin film is associated primarily with oxygen vacancies. PACS 81.15.Cd; 81.40.Ef; 78.55.-m; 78.55.Et  相似文献   

8.
离子束反应溅射沉积SiO2薄膜的光学特性   总被引:1,自引:0,他引:1  
 主要研究采用离子束反应溅射(RIBS)制备SiO2薄膜的折射率、消光系数、化学计量比与氧气在氩氧混合工作气体中含量及其沉积速率的关系。研究结果表明:RIBS制备的SiO2薄膜在0.63 μm处折射率n= 1.48,消光系数小于10-5;随着沉积速率的增加,薄膜的折射率和消光系数随之变大,当沉积速率超过0.3 nm/s,即使是在纯氧环境溅射,折射率值也不低于1.5;通过对红外透射光谱的主吸收峰位置研究得到沉积的SiO2薄膜为缺氧型,化学计量比不超过1.8,且红外吸收峰位置和SiO2折射率存在对应关系,因此在不加热衬底情况下使用RIBS制备SiO2薄膜时,会限制沉积速率的提高。  相似文献   

9.
A novel quantification approach is applied to determine in situ the amount of surface oxygen within the sputtered particle escape depth during steady-state sputter depth profiling of silicon under simultaneous oxygenation with an oxygen flood gas or with an oxygen primary ion beam. Quantification is achieved by comparing the secondary ion intensities of 16O that is adsorbed or implanted at the Si surface with the measured peak intensities of a calibrated 18O ion implant used as a reference standard. Sputtered ion yields can thereby be related to surface oxygen levels. In the present work the dependences of the partial silicon sputter yield Y and of the positive and negative secondary ion useful yields UY(X±) (X = B, O, Al, Si, P) on the oxygen/silicon ratio, O/Si, in the sputtered flux are studied for 40Ar+ bombardment of Si with simultaneous O2 flooding. The silicon sputter yield is found to decrease with increasing flood pressure and O/Si ratio by up to a factor of 3. Both positive and negative secondary ion yields are enhanced by the presence of oxygen at the silicon surface. The useful ion yield of Si+ scales non-linearly with the atom fraction of surface oxygen; this behavior is shown to invalidate models that suggest that Si+ ion yield enhancement is dominated either by isolated oxygen atoms or by formation of SiO2 precipitates. In contrast a microscopic statistical model that assumes that local Si+ ion formation depends only on the number of oxygen atoms coordinated to the Si atom to be ejected fits the ion yield data quantitatively.  相似文献   

10.
11.
Adsorption of oxygen on iron at ambient temperature and low pressure is shown by XPS to give a chemisorbed species and the oxide, Fe2O3. At low temperatures a further adsorbed species is detected, similar to the nickel-oxygen system. Correction of the intensity of the oxygen signal for depth results in an oxidation curve in agreement with reported work using other techniques, i.e. oxidation is fast until about four layers of oxide are formed, at an exposure of ca. 102 L, and then proceeds slowly to about ten layers. Adsorption of water vapour produces an overlayer less than one layer in depth at an exposure of 105 L. Comparison of the overlayer depths calculated from the decrease in unoxidised iron signal intensity and from the increase in oxygen intensity gives good agreement for the thick oxide film produced by oxygen adsorption, but not for the thin overlayer formed by exposure to water vapour. This suggests a difference in packing of the ions in the thin overlayer compared to the arrangement in the bulk oxide.  相似文献   

12.
Cathodoluminescent ageing characteristics of SrGa2S4:Ce3+ under prolonged electron beam bombardment was studied and the data are presented. The cathodoluminescent intensity with an increasing Coulomb loading was observed to degrade under different primary electron beam voltages. Auger electron spectroscopy (AES) and X-ray photoelectron spectroscopy (XPS) were used to monitor the surface chemical changes during electron beam bombardment and after the degradation process. Auger peak to peak heights monitored during the ageing process suggest a loss in S and C and an initial increase in oxygen concentration on the surface. XPS results indicate the formation of a SrO overlayer due to electron stimulated surface chemical reactions (ESSCRs).  相似文献   

13.
Photoelectron spectroscopic studies of the oxidation of Ni(111), Ni(100) and Ni(110) surfaces show that the oxidation process proceeds at 295 and 485 K in two distinct steps: a fast dissociative chemisorption of oxygen followed by oxide nucleation and lateral oxide growth to a limiting coverage of 3 NiO layers. The oxygen concentration in the 295 K saturated oxygen layer on Ni(111) was confirmed by 16O(d,p) 17O nuclear microanalysis. At 295 and 485 K the oxide growth rates are in the order Ni(110) > Ni(111) > Ni(100). At 77 K the oxygen uptake proceeds at the same rate on all three surfaces and shows a continually decreasing sticking coefficient to saturation at ~2.1 layers (based upon NiO). An O 1sb.e. = 529.7 eV is associated with NiO, and O ls b.e.'s of ~531.5 and 531.3 eV can be associated, respectively, with defect oxide (Ni2O3) or (in the presence of H2O) with an NiO(H) species. The binding energies (Ni 2p, O 1s) of this NiO(H) species are similar to those for Ni(OH)2. Defect oxides are produced by oxidation at 485 K, or by oxidation of damaged films (e.g. from Ar+ sputtering) and evaporated films. Wet oxidation (or exposure to air) of clean nickel surfaces and oxides, and exposure of thick oxide to hydrogen at high temperature results in an O 1s b.e. ~531.3 eV species. Nuclear microanalysis 2H(3He,p) 4He indicates the presence of protonated species in the latter samples. Oxidation at 77 K yields O 1s b.e.'s of 529.7 and ~531 eV; the nature of the high b.e. species is not known. Both clean and oxidised nickel surfaces show a low reactivity towards H2O; clean nickel surfaces are ~103 times less reactive to H2O than to oxygen.  相似文献   

14.
The adsorption of N2O on Ru(001) at ~ 100K has been studied using X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS), and thermal desorption spectroscopy (TDS). At low exposures, N2O partly dissociates leaving atomic oxygen on the surface and desorbing N2. With increasing N2O exposures, molecular adsorption becomes dominant. He II UPS of the gas phase, solid and monolayer adsorbed molecular N2O are compared. To within experimental error, the peak spacings in all three are the same. The distributions of intensities in the gas and solid phase spectra are the same. In the monolayer spectra, the 7~σ (terminal nitrogen lone pair) orbital intensity is decreased significantly indicating that it is more strongly coupled to the surface than the other valence orbitals. No molecular N2O remains after heating to above 180 K and no detectable amount of dissociated nitrogen appears. Molecularly adsorbed N2O is easily dissociated by an electron beam to give N2(g), NO(g) and O(a).  相似文献   

15.
The contribution deals with ZnO thin layers doped by nitrogen which were prepared by pulsed laser deposition in N2O ambient atmosphere. Our approach is based on ablation of undoped ZnO target in active atmosphere containing N2O gas without any supporting excitation equipment in parallel. Ablation of ZnO target was performed at different pressures (1–32 Pa) of N2O ambient atmosphere by pulsed Nd:YAG laser (at 355 nm). Layers of ZnO were grown on different substrates (Si, sapphire, fused silica) and their properties were investigated by various analytical methods: scanning electron microscopy (SEM), secondary ion mass spectroscopy (SIMS), X-ray diffraction (XRD), and optical transmission spectroscopy. The results confirmed incorporation of nitrogen into ZnO layers and its concentration was pressure dependent. According to SIMS analysis, there is a certain pressure level (above 10 Pa) when the presence of N becomes negligible. Transmittance spectra showed increasing of the optical band gap (E g) according to the pressure of N2O.  相似文献   

16.
The effect of laser ablation on copper foil irradiated by a short 30 ns laser pulse was investigated by X-ray photoelectron spectroscopy. The laser fluence was varied from 8 to 16.5 J/cm2 and the velocity of the laser beam from 10 to 100 mm/s. This range of laser fluence is characterized by a different intensity of laser ablation. The experiments were done in two kinds of ambient atmosphere: air and argon jet gas.The chemical state and composition of the irradiated copper surface were determined using the modified Auger parameter (α′) and O/Cu intensity ratio. The ablation atmosphere was found to influence the size and chemical state of the copper particles deposited from the vapor plume. During irradiation in air atmosphere the copper nanoparticles react with oxygen and water vapor from the air and are deposited in the form of a CuO and Cu(OH)2 thin film. In argon atmosphere the processed copper surface is oxidized after exposure to air.  相似文献   

17.
The thermal oxidation process of metallic zinc on 6H-SiC(0 0 0 1) surface has been investigated by using atomic force microscopy (AFM), synchrotron radiation photoelectron spectroscopy (SRPES) and XPS methods. The AFM images characterize the surface morphology of ZnO film formed during the thermal oxidation and SRPES record the valence band, Si 2p and Zn 3d spectra at different stages. The O 1s peak is recorded by XPS because of the energy limit of the synchrotron radiation. Our results reveal that the silicon oxides layer of SiC substrate can be reduce by hot metallic zinc atom deposition. The oxygen atoms in the silicon oxides are captured by the zinc atoms to form ZnOx at the initial stage and as a result, the oxidized SiC surface are deoxidized. After the zinc deposition with the final thickness of 2.5 nm, the sample is exposed in oxygen atmosphere and annealed at different temperatures. According to the evolution of peaks integrated intensities, it is considered that the Zn/SiC system will lose zinc atoms during the annealing in oxygen flux at high temperature due to the low evaporation temperature of pure zinc. After further annealing in oxygen flux at higher temperature, the substrate is also oxidized and finally the interface becomes a stable SiC-SiOx-ZnO sandwich structure.  相似文献   

18.
朱沛然  江伟林  徐天冰  殷士端 《物理学报》1992,41(12):2049-2054
本文报道了一种分析硅衬底上SiNx和SiOx的N/Si和O/Si含量比的简便方法。用1.95MeV质子弹性散射测量薄膜(9000—15000)的组分比和厚度,实验值与2.1MeVHe的背散射分析(RBS)结果符合得很好;对微米以上厚度样品,MeVH束分析更为有利,这是与He束背散射分析互补的一种方法。文中给出了实验结果,并进行了讨论。 关键词:  相似文献   

19.
The effect of inert gas additive (He, Ar, Xe) to CH4/H2 discharges for dry etching of single crystal ZnO was examined. The etch rates were higher with Ar or Xe addition, compared to He but in all cases the CH4/H2-based mixtures showed little or no enhancement over pure physical sputtering under the same conditions. The etched surface morphologies were smooth, independent of the inert gas additive species and the Zn/O ratio in the near-surface region decreases as the mass number of the additive species increases, suggesting preferential sputtering of O. The plasma etching improved the band-edge photoluminescence intensity from the ZnO for the range of ion energies used here (290-355 eV), due possibly to removal of surface contamination layer.  相似文献   

20.
In a gas reaction cell (GRC), installed in a high-resolution transmission electron microscope (HRTEM) (JEOL 4000EX), samples can be manipulated in an ambient atmosphere (p<50mbar). This experimental setup permits not only the observation of solid-gas reactions in situ at close to the atomic level but also the induction of structural modifications under the influence of a plasma, generated by the ionization of gas particles by an intense electron beam. Solid state reactions of non-stoichiometric niobium oxides and niobium tungsten oxides with different gases (O2, H2 and He) have been carried out inside this controlled environment transmission electron microscope (CETEM), and this has led to reaction products with novel structures which are not accessible by conventional solid state synthesis methods.Monoclinic and orthorhombic Nb(12)O(29) crystallize in block structures comprising [3x4] blocks. The oxidation of the monoclinic phase occurs via a three step mechanism: firstly, a lamellar defect of composition Nb(11)O(27) is formed. Empty rectangular channels in this defect provide the diffusion paths in the subsequent oxidation. In the second step, microdomains of the Nb(22)O(54) phase are generated as an intermediate state of the oxidation process. The structure of the final product Nb(10)O(25), which consists of [3x3] blocks and tetrahedral coordinated sites, is isostructural to PNb(9)O(25). Microdomains of this apparently metastable phase appear as a product of the Nb(22)O(54) oxidation. The oxidation reaction of Nb(12)O(29) was found to be a reversible process: the reduction of the oxidation product with H(2) results in the formation of the starting Nb(12)O(29) structure. On the other hand, the block structure of Nb(12)O(29) has been destroyed by a direct treatment of the sample with H(2) while NbO in a cubic rock salt structure is produced.This in situ technique has also been applied to niobium tungsten oxides which constitute the solid solution series Nb(8-n)W9(+n)O47 with 0< or =n< or =4. All of these phases crystallize in the threefold tetragonal tungsten bronze (TTB) superstructure of Nb(8)W(9)O(47) (n=0). In the main reaction, these phases decompose in a gas plasma (O2, H2 or He, p=20mbar) into WO(3-x), which evaporates and solidifies again near the irradiated crystallite, and (Nb,W)(24)O(64), which crystallizes in a 2a superstructure of the TTB type observed here for the first time in the system Nb-W-O. Nb(8)W(9)O(47), Nb(7)W(10)O(47) and Nb(6)W(11)O(47) always react in this way, independent of the applied gas. On the other hand, the treatment of Nb(5)W(12)O(47) (n=3) and Nb(4)W(13)O(47) (n=4) in an oxygen atmosphere often caused a different reaction: these phases have been oxidized and a heavily disordered bronze-type structure has been formed. The oxygen excess in these products is largely accommodated in segregated domains of WO(3).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号