首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper presents a comparison study of numerical simulation of catalytic combustion of methane on Pt catalyst using two different physical models. The external surface model and the washcoat model were employed. The simulations were conducted in a two-dimensional monolith reactor with detail surface kinetics. The agreement of simulation results of the washcoat model with the measured data is good. However, in contrast to experimental data, the external surface method will produce a lower result of conversion of CH4 at low temperature due to the neglecting of the larger inner surface of the washcoat. Moreover, the effects of specific surface area and pore size of washcoat on reaction rate were discussed. It can be concluded that the washcoat model would provide a more realistic result and can enrich the contents of numerical simulation of catalytic reaction.  相似文献   

2.
The effects of hydrothermal aging on the performance of CeO2-based catalyzed diesel particulate filter (CDPF) was numerically investigated in this study based on a zero-dimensional model using the plug flow reactor in which a chemical reaction kinetic mechanism was established and validated by the simulated gas environment experiment. The effects of regeneration temperature, O2 concentration in the ultimate emission conditions, the ratio of NO2 in NOx (α) and the ratio of NOx to soot (β) on catalyst deactivation temperature and soot oxidation rate were investigated with fresh and hydrothermal aging CeO2-based CDPF. The results show that hydrothermal aging of CeO2-based catalysts raises the regeneration temperature from 613 to 783 K and shifts the soot catalytic combustion reaction path from complete to incomplete oxidation. Soot oxidation rate of fresh catalyst first increases rapidly at 516 K and then starts to slow down gradually at 633 K, but for hydrothermal aging catalysts, are 601 K and 789 K, respectively. With O2 concentration increased from 1.5 mol/m3 to 5.5 mol/m3, the catalyst deactivation of fresh and hydrothermal aging catalyst increased from 609 K to 602 K, 791 K to 818 K, respectively. The increase in α and β leads to an increase in soot oxidation rate and a decrease in regeneration temperature. The deactivation temperature of catalyst is increased in higher α (1.0) and lower β (0.1), which the highest is 821 K. Synergistic mechanisms of NOx, regeneration temperature, and hydrothermal aging effects on soot catalytic combustion in CeO2-based CDPF are revealed deeply with the help of zero-dimensional model.  相似文献   

3.
A series of CuO/CeO2 catalysts with different Cu-Ce compositions were synthesized by co-precipitation method and characterized by X-ray diffraction, H2-TPR, CO-TPD, SEM and X-ray photoelectron spectroscopy (XPS) techniques. The effects of Cu-Ce composition and water vapor on the catalytic properties for the selective CO oxidation in the hydrogen-rich gas were investigated. The results indicated that CuO (10%)/CeO2 catalyst remained the maximum CO conversion and selectivity at 140 and 160 °C, while the performance of CuO/CeO2 catalysts deteriorated with the CuO molar ratio further increased. The interfacial CuO and CeO2 interaction and synergistic effect enhanced the redox properties of CuO/CeO2 catalyst and the highly dispersed copper species were proposed as the active sites for the selective CO oxidation. The blockage of catalytic active sites by absorbed water and the formation of CO-H2O surface complexes reduced the activity of CuO (10%)/CeO2 catalyst. The decreasing of surface lattice oxygen and absorbed oxygen species and the agglomeration of copper particles were the plausible interpretations for the deactivation of CuO (10%)/CeO2 catalyst.  相似文献   

4.
A series of Ce1−xCuxO2 nanocomposite catalysts with various copper contents were synthesized by a simple hydrothermal method at low temperature without any surfactants, using mixed solutions of Cu(II) and Ce(III) nitrates as metal sources. These bimetal oxide nanocomposites were characterized by means of XRD, TEM, HRTEM, EDS, N2 adsorption, H2-TPR and XPS. The influence of Cu loading (5-25 mol%) and calcination temperature on the surface area, particle size and catalytic behavior of the nanocomposites have been discussed. The catalytic activity of Ce1−xCuxO2 nanocomposites was investigated using the test of CO oxidation reaction. The optimized performance was achieved for the Ce0.80Cu0.20O2 nanocomposite catalyst, which exhibited superior reaction rate of 11.2 × 10−4 mmol g−1 s−1 and high turnover frequency of 7.53 × 10−2 s−1 (1% CO balanced with air at a rate of 40 mL min−1, at 90 °C). No obvious deactivation was observed after six times of catalytic reactions for Ce0.80Cu0.20O2 nanocomposite catalyst.  相似文献   

5.
In this paper, poly(4vinylpyridine-co-styrene) (P(4VP-co-St)) was grafted on silica gel particles in the manner of “grafting from”, and the grafting particle P(4VP-co-St)/SiO2 was gained. The grafting particle P(4VP-co-St)/SiO2 is a novel kind of supports for immobilizing metalloporphyrin catalysts. Then, the immobilization of cobalt tetraphenylporphyrin (CoTPP) on the supports P(4VP-co-St)/SiO2 was carried out via the axial coordination reaction between CoTPP and the pyridine groups of the grafted P(4VP-co-St), resulting in the heterogenised catalysts CoTPP-P(4VP-co-St)/SiO2. The synthesized catalysts were characterized by FTIR and the axial coordination process between CoTPP and the grafted P(4VP-co-St) was confirmed by UV-vis. The effects of various factors on the immobilization reaction of CoTPP were studied in detail. Finally, the catalytic performance of CoTPP-P(4VP-co-St)/SiO2 in the catalytic oxidation process of ethyl benzene was investigated. The experimental results show that the axial coordination reaction is a very easy and novel method for favorably immobilizing CoTPP onto the P(4VP-co-St)/SiO2 surfaces. During the immobilization process of CoTPP on P(4VP-co-St)/SiO2, the most bonding amount of CoTPP (0.19 g/g) is obtained under the lower temperature (5 °C) and the higher concentration of CoTPP(6.0 mg/ml) lasting 4 h. Moreover, the supported catalyst CoTPP-P(4VP-co-St)/SiO2 can effectively activate the dioxygen, and obviously catalyze the transform of ethylbenzene into acetophenone. So it exhibits the fine catalytic activity.  相似文献   

6.
采用等体积浸渍法制备了一系列负载型Ni基催化剂,利用XRD、H2-TPR、NH3-TPD 等技术表征了催化剂的理化特性,考察了载体(CMK-3、SiO2ZrO2、MgO、Al2O3)、助剂(Cu、Ce、Fe)对Ni基催化剂理化特性的影响,测试了230 oC、0.1 MPa冷压下催化剂对邻甲酚原位加氢反应的性能.结果表明,在负载型镍基催化剂作用下,甲醇水相重整制氢反应可以与邻甲酚的原位加氢反应相耦合;以CMK-3为载体的催化剂活性明显优于其他三种载体,邻甲酚的转化率为45.35%;助剂的添加对催化剂性能影响显著,Fe 的引入使原位加氢体系的转化率降至40.49%,助剂Ce、Cu的加入提高了Ni/CMK-3催化剂的原位加氢反应性能,转化率分别提高至64.6%、66.8%,Cu的添加改变了产物的分布,在产物中出现了新产物甲苯;同时探讨原位加氢反应路径及反应机理.  相似文献   

7.
Initial oxidation of the Ce–Ru(0001) overlayer system has been studied by photoelectron spectroscopy and low energy electron diffraction. The Ce overlayer thicknesses ranged from 2 to 7 Å. The interface was studied at annealing temperatures up to 1000°C and it was oxidized at low oxygen exposures up to 68 l at 500°C. Interactions between Ce and Ru at the interface were indicated by intensity variations of the Ce3d4f2 and Ce3d4f0 features with annealing temperature. No intermixing between Ce and Ru exceeding one monolayer was observed. Upon oxidation, trivalent Ce2O3 oxide was initially observed at the surface. With increased oxygen exposures, a conversion from trivalent oxide to ‘tetravalent’ CeO2 was seen. The Ce overlayer had no catalytic effect on oxidation of the Ru substrate in contrast to previous studies on other refractory metal, such as Nb, Ta or W.  相似文献   

8.
No-noble metal CeO2-TiO2 catalysts prepared by sol-gel method were developed and examined for catalytic wet air oxidation (CWAO) of acetic acid. The structure of the catalysts was measured by BET, SEM, XRD, XPS and DTA-TG. We investigated the effect of the interactions of Ce and Ti on the structure of CeO2-TiO2 catalysts. The mechanisms of the relationships between the different content of Ti and the activity of CeO2-TiO2 catalysts were discussed. The results showed that the average crystal size of CeO2 decreased and the surface areas increased; the low valence of Ce3+ increase, and the chemisorbed oxygen slightly decreased with the increase of Ti content on the surface of CeO2-TiO2 catalysts. The order of the activity in CWAO of acetic acid followed: Ce/Ti 1/1 > Ce/Ti 3/1 > Ce/Ti 1/3 > Ce/Ti 5/1 > CeO2 > TiO2 > no catalyst. In CWAO of acetic acid, the optimal atomic ratio of Ce and Ti was 1, and the highest COD removal was over 64% at 230 °C, 5 MPa and 180 min reaction time over Ce/Ti 1/1 catalyst. The excellent activity and stability of CeO2-TiO2 catalysts was observed in our study.  相似文献   

9.
The photoluminescence (PL) spectra, PL excitation spectra, color coordinates, and X-ray diffraction spectra are reported for SrGa2S4:Sn,Re(=Ce and Gd, respectively) phosphors. By mixing SrGa2S4:Sn,Ce phosphors with different Ce3+ concentrations, white emissions can be obtained under the excitation of a 340-nm UV LED. Emissions in the green to yellow color range can be obtained from SrGa2S4:Sn,Gd phosphors. The rare earth ions enhance the green emission band, which peaks at 534 nm, instead of the yellow one. The origin of this enhancement is discussed. The resonant energy transfer rates are estimated in the cases from Ce3+ to the green and yellow centers of Sn2+ and between the yellow centers and the green centers.  相似文献   

10.
The radiation effects induced effects by electron beam (EB) treatment on the catalytic activity of Ni/γ-Al2O3 were studied for the carbon dioxide reforming of methane with different EB energy and absorbed radiation dose. Transmission electron microscope (TEM), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS) were used to determine the change in structure and surface states of Ni/γ-Al2O3 catalyst before and after the EB treatment. Higher energy EB treatment is useful for increasing the proportion of the active sites (such as Ni0 and NiAl2O4-phase) on the surface. The increase of Ni/Al-ratio indicates that the Ni dispersion on the surface increased with the EB-treatment, resulting in an increase of the active sites, which leads to improving the catalytic activity. XPS measurement also showed a decrease of the surface carbon with EB dose. The maximum 20% increase in the conversion of CO2/CH4-mixture into CO/H2 gas was observed for the catalyst treated with 2 MeV energy and 600 kGy dose of EB relative to untreated.  相似文献   

11.
White light-emitting diodes (WLEDs) were fabricated by employing a combination of a commercial yellow emission Ce3+-doped Y3Al5O12 (YAG:Ce)-based phosphor and all-inorganic perovskite quantum dots pumped with blue LED chip. Perovskite quantum dot solution was used as the color conversion layer with liquid-type structure. Red-emitting materials based on cesium lead halide (CsPb(X)3) perovskite quantum dots were introduced to generate WLEDs with high efficacy and high color rendering index through compensating the red emission of the YAG:Ce phosphor-based commercialized WLEDs. The experimental results suggested that the luminous efficiency and color rendering index of the as-prepared WLED device could reach up to 84.7 lm/W and 89, respectively. The characteristics of those devices including correlated color temperature (CCT), color rendering index (CRI), and color coordinates were observed under different forward currents. The as-fabricated warm WLEDs showed excellent color stability against the increasing current, while the color coordinates shifted slightly from (0.3837, 0.3635) at 20 mA to (0.3772, 0.3592) at 120 mA and color temperature tuned from 3803 to 3953 K.  相似文献   

12.
A fundamental difference in the catalytic activity of complex compounds of copper(II), bis(2-phenyliminomethylene-3-hydroxybenzyl[b]thiophenate) copper(II) (CuL2) and bis(2-acetylacetonate) copper(II) (Cu(acac)2), in the decomposition of cyclohexenyl and tetralyl hydroperoxides in solvents of different natures is established. Aprotic solvent chlorobenzene and ethanol, capable of forming intermolecular hydrogen bonds, are used. In chlorobenzene, catalyst deactivation occurs at a small depth of conversion of hydroperoxides, while in alcohol, no deactivation is observed. A possible mechanism explaining the absence of catalyst passivation in an alcoholic medium is proposed.  相似文献   

13.
The static electric quadrupole interaction of140Ce and204Pb has been studied in polycrystalline PbTiO3 at the lead site with the time-differential perturbed angular correlation (TDPAC) method. The interaction frequencies areω Q(2083 keV;140Ce)=2.11 (17) MHz andω Q(1274keV;204Pb)=3.60(3) MHz. The results are compared with the electric field gradient calculated in a point charge model. Under the assumption that the covalent contributions for Ce and Pb are equal, one can derive the quadrupole moment of the 1274 keV state of204Pb to be ¦Q¦=0.68 b.  相似文献   

14.
CeO2–MnO x composites possessing rod-like morphology (fixed mole proportion of Ce/Mn) were synthesized through hydrothermal method and chosen as supporters to load PdO nanoparticles (PdO/Ce x Mn1–x ). The size of loaded PdO nanoparticles is about 2 nm. The catalytic behaviors of supported catalysts were examined through the complete catalytic oxidation of benzene. The results illustrated that the activities of supported catalysts were enhanced greatly as compared to unsupported, and the completely conversion temperature of benzene was reduced to ca. 250 °C. The effect of noble metal species (PdO) addition on the catalytic property and crystal structure of composites was researched in detail. The data revealed that the interaction between PdO and supporter, and intrinsic properties of supporter resulted in the enhancement of catalytic abilities.  相似文献   

15.
The degradation of the cathodoluminescence (CL) intensity of cerium-doped yttrium silicate (Y2SiO5:Ce) phosphor powders was investigated for possible application in low voltage field emission displays (FEDs). Auger electron spectroscopy (AES), X-ray photoelectron spectroscopy (XPS) and CL spectroscopy were used to monitor changes in the surface chemical composition and luminous efficiency of commercially available Y2SiO5:Ce phosphor powders. The degradation of the CL intensity for the powders is consistent with a well-known electron-stimulated surface chemical reaction (ESSCR) model. It was shown with XPS and CL that the electron stimulated reaction led to the formation of a luminescent silicon dioxide (SiO2) layer on the surface of the Y2SiO5:Ce phosphor powder. XPS also indicated that the Ce concentration in the surface layer increased during the degradation process and the formation of CeO2 and CeH3 were also part of the degradation process. The CL intensity first decreased until about 300 C cm−2 and then increased due to an extra peak arising at a wavelength of 650 nm.  相似文献   

16.
Commercial and home-made Ce-Zr catalysts prepared by co-precipitation were characterised by XRD, Raman spectroscopy, N2 adsorption at −196 °C and XPS, and were tested for NO oxidation to NO2. Among the different physico-chemical properties characterised, the surface composition seems to be the most relevant one in order to explain the NO oxidation capacity of these Ce-Zr catalysts. As a general trend, Ce-Zr catalysts with a cerium-rich surface, that is, high XPS-measured Ce/Zr atomic surface ratios, are more active than those with a Zr-enriched surface. The decrease in catalytic activity of the Ce-Zr mixed oxided upon calcinations at 800 °C with regard to 500 °C is mainly attributed to the decrease in Ce/Zr surface ratio, that is, to the surface segregation of Zr. The phase composition (cubic or t′′ for Ce-rich compositions) seems not to be a direct effect on the catalytic activity for NO oxidation in the range of compositions tested. However, the formation of a proper solid solution prevents important surface segregation of Zr upon calcinations at high temperature. The effect of the BET surface area in the catalytic activity for NO oxidation of Ce-Zr mixed oxides is minor in comparison with the effect of the Ce/Zr surface ratio.  相似文献   

17.
E. Coetsee 《Applied Surface Science》2010,256(22):6641-10155
X-ray photoelectron spectroscopy (XPS) results were obtained for standard Y2SiO5:Ce phosphor powders as well as undegraded and 144 h electron degraded Y2SiO5:Ce pulsed laser deposited (PLD) thin films. The two Ce 3d peaks positioned at 877.9 ± 0.3 and 882.0 ± 0.2 eV are correlated with the two different sites occupied by Ce in the Y2SiO5 matrix. Ce replaced the Y in the two different sites with coordination numbers of 9 and 7. The two Ce 3d XPS peaks obtained during the thin film analysis were also correlated with the luminescent mechanism of the broad band emission spectra of the Y2SiO5:Ce X1 phase. These two different sites are responsible for the two main sets of cathodoluminescent (CL) and photoluminescence (PL) peaks situated at wavelengths of 418 and 496 nm. A 144 h electron degradation study on the Y2SiO5:Ce thin film yielded an increase in the CL intensity with a second broad emission peak emerging between 600 and 700 nm. XPS analysis showed the presence of SiO2 on the surface that formed during prolonged electron bombardment. The electron stimulated surface chemical reaction (ESSCR) model is used to explain the formation of this luminescent SiO2 layer.  相似文献   

18.
In this paper experimental studies of nonvolatile photorefractive holographic recording in Ce:Cu:LiNbO3 crystals doped with Sc(0,1,2,3 mol%) were carried out. The Sc:Ce:Cu:LiNbO3 crystals were grown by the Czochralski method and oxidized in Nb2O5 powders. The nonvolatile holographic recording in Sc:Ce:Cu:LiNbO3 crystals was realized by the two-photon fixed method. We found that the recording time of Sc:Ce:Cu:LiNbO3 crystal became shorter with the increase of Sc doping concentration, especially doping with Sc(3 mol%), which exceeds the so-called threshold, and there was little loss of nonvolatile diffraction efficiencies between Sc(3 mol%):Ce:Cu:LiNbO3 and Ce:Cu:LiNbO3 crystals.  相似文献   

19.
采用共沉淀法制备不同组分类水滑石前驱体Co-M-Al和Co-M-Ce-Al (M=Zn, Ni, Cu)复合氧化物催化剂催化分解N2O. 结果表明,Co-M-Al系列氧化物催化剂的催化活性Co-Ni-Al系列>Co-Zn-Al系列>Co-Cu-Al系列;CeO2添加使得催化剂催化活性进一步提高,N2O分解温度T50和T90均下降80 oC;继续负载碱金属K也使氧化物催化剂催化活性提高,N2O分解温度T50和T90下降约50 oC.  相似文献   

20.
Research on quasi-static pressure-induced depolarization illustrates that Pb(Zr,Sn,Ti)O3 ceramic may be useful in the technology of pulse power. However, lack of knowledge on the shock-induced depolarization hinders this application. To fill this gap, we investigated the shock-wave- and hydrostatic-pressure-induced depolarization of Pb0.99Nb0.02[(Zr0.90Sn0.10)0.96Ti0.04]0.98O3 ceramic. In the hydrostatic experiment, complete and sudden depolarization took place at 140 MPa. Shock wave experiments in the normal and axial modes were conducted in the pressure range from 0.81 to 4.50 GPa. At 2.50 GPa, the phase transition occurred completely and the short-circuit current reached 32 A in the normal mode. We obtained 31.0 kV voltage, 0.96 MW and 0.92 J cm?3 high-voltage pulse with 1000 Ω load. In the axial mode, the shape of the current pulse and its time integral were found to be strongly shock pressure dependent. Our work lays the foundation for the application of Pb(Zr,Sn,Ti)O3 in the single-use power supply.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号